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Abstract- In this work we present an efficient environment 
representation based on the use of landmarks and language- 
based motion programs. The approach is targeted towards 
applications involving expansive, imprecisely known terrain 
without a single global map. To handle the uncertainty inher- 
ent in real-world applications a partially-observed controlled 
Markov chain structure is used in which the state space is 
the set of landmarks and the control space is a set of motion 
programs. Using dynamic programming, we derive an optimal 
controller to maximize the probability of arriving at a desired 
landmark after a finite number of steps. A simple simulation 
is presented to illustrate the approach. 

I. INTRODUCTION 

As systems theory reaches into the domain of multi-modal 
systems, it reveals a complexity of behavior that is not usually 
encountered in classical models. This complexity is part of 
what motivates research in the subject but at the same time 
it gives rise to new challenges when it comes to answering 
basic system-theoretic questions in the new setting. This 
point is perhaps most easily illustrated in the following 
example: knowing that a mobile robot or other autonomous 
system is controllable (by checking the properties of a 
governing differential equation) does not tell us whether it is 
possible (or how) to steer the robot between two locations 
in a reasonably complex environment. The reasons for this 
difficulty are twofold. First, the environment is at best only 
locally state space-like, with regions that are uninteresting or 
should be avoided. Second, a complex environment makes it 
difficult to design control laws, especially if one insists on 
doing so at the level of sensors and actuators. 

Efforts to address the latter challenge have included re- 
search on the “motion description languages” MDL and 
MDLe [l], [2], [3] which provide a means for abstracting 
from the low-level details (e.g. kinematics and dynamics) of a 
control system. Control programs written in these languages 
combine feedback control laws and logic into strings that 
have meaning almost independently of the underlying sys- 
tem, much like desktop software achieves a level of hardware 
independence by relying on appropriate device drivers. 

The design of a motion description language shapes the set 
of control laws that can be formulated, as does the choice 
of a representation for the environment. After all, feedback 
control is a map between observations and inputs. Perhaps 
then it should come as no surprise that language can be useful 
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not only for expressing control tasks but also for describing 
the environment. In particular, [4] proposed representing 
the environment of a language-driven dynamical system 
by means of landmarks, linked together not by geometric 
relations but by the feedback control laws required to ntoile 
from one locatioiz to another. This gives rise to a directed 
graph, with nodes corresponding to landmarks and edges 
being identified with control programs encoded in the motion 
description language MDLe [2], [3]. This representation of 
the world makes contact with studies on human and animal 
navigation (see, e.g., [5]) that suggest the existence of two 
navigation systems used by mammals: a local response sys- 
tem and a global place-knowledge system. In simple terms, 
when the goal location is visible local information is used to 
navigate; when moving to locations which are not visible, 
stored knowledge of the spatial structure of the world is 
used. Although landmark-based navigation has been explored 
extensively by other authors for localization [6], [7], naviga- 
tion [SI, [9] and descriptions of “large-scale” environments 
[lo], the novelty of the approach in [4] is that geometric 
relationships and global coordinates are abandoned in favor 
of language-based instructions that can be interpreted down 
to control laws suitable for driving a differential equation- 
based model. This results in a parsimonious description of 
the world, without the need for global geometry and without 
mapping areas that are easily navigable or uninteresting. 

In this work we use [4] as a point of departure to study 
language-driven control and navigation in a stochastic setting. 
We exploit classical results on partially-observed controlled 
Markov chains to obtain control programs (more precisely 
strings in a formal language) that are optimal in the presence 
of uncertainty associated with the environment, the sensors 
and actuators of the system under consideration and with 
the precision of the language itself. The next section gives a 
brief description of MDLe. Section 111 presents the control 
problem we are concerned with and describes its Markov 
chain representation. In Section IV we derive control policies 
that are optimal for moving to a desired landmark. Section V 
contains simulation results that illustrate our approach. 

11. MDLE 

The starting point for MDLe is an underlying physical 
system such as a mobile robot with a set of sensors and 
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actuators for which we wish to specify a motion control 
program. The system is assumed to be govemed by a 
differential equation of the form 

(1) 

where z(.) : R+ -+ R" is the state of the system, U ( . )  : 
RP x R+ -+ R" is a control law of the type U = ~ ( t ,  h(z)) ,  
and G is a matrix whose columns g2 are vector fields in R". 
The simplest element of MDLe is the atom, defined to be a 
triple of the form o = ( U ,  [, T ) ,  where U is as defined earlier, 
[ : RP -+ {0,1} is a boolean interrupt function defined on 
the space of outputs from p sensors, and T E R+ denotes the 
value of time (measured from the time the atom is initiated) at 
which the atom will expire. To evaluate the atom is to apply 
the control law U until the interrupt [ is low or until T units 
of time have elapsed. Atoms can be composed into a string, 
called a behavior, that carries its own interrupt function and 
timer. Behaviors can in turn be composed to form higher- 
level strings (called partial plans) and so on. We will use 
the term plan to refer to a generic MDLe string independent 
of the number of nested levels it contains. For more details 
on the language, including example programs, see [3]. 

X = f(z) + G ( ~ ) u ;  y = h(z)  E Rp 

111. LANDMARK-BASED NAVIGATION AMID 
UNCERTAINTY 

We assume that there is a set, L: = { L I ,  . . . , Ln}, of 
"interesting" or useful geographical locations which we call 
landmarks. These landmarks can take various forms, such as 
GPS coordinates, visual cues, or evidence grid maps [ 111. In 
general, however, they are identified with local geographical 
information only; that is they are not referenced to any global 
coordinate system. We associate to each landmark a sensor 
signature as follows. Let s ( t )  E Rp be the sensor data 
collected at time t and let L be the current landmark taking 
values in {L ,}  U 8. Then 

(2)  L = Li if s ( t )  = s Z ( t )  t E [to,  t o  + TI 

where si(t), t E [to,  to + TI is the sensor signature of 
the i f h  landmark. We do not assume these signatures to be 
unique since a robot equipped with noisy sensors may at 
best be able to identify to within a subset of the collection of 
landmarks. We thus restrict our observations to the collection 
of equivalence classes where two landmarks are deemed 
equivalent if their signatures are "clos< based_ on some 
metric. We refer t,o this set as 2 = {L l , .  . . , Lp}  where 
p 5 n and each Li is a representative of the equivalence 
class. 

We will classify navigation tasks into two categories. The 
first involves motion on or near a landmark. In this setting the 
robot knows what landmark it is on and possesses a map of 
the nearby terrain. Assuming the robot can use its sensors to 
localize itself on this map, navigation is in principle solved by 
path planning. In this paper we are concerned with navigation 
bemeen landmarks where, because we have assumed that we 

do not have global geographical information, we cannot rely 
on any map. In the absence of sensing and actuator noise, 
one can replace geometric relationships between landmarks 
with instructions on how to get from one to the other [41. The 
environment is then represented by a directed graph in which 
the nodes are the landmarks and edges are associated with 
MDLe plans. In order to be practical, this approach must be 
modified away from its deterministic setting, since we cannot 
guarantee that a given plan will perform as expected every 
time due to noisy sensing and control and environmental 
uncertainty. 

To handle this uncertainty, we generalize the directed 
graph representation to a partially-observed controlled 
Markov chain. Given a collection of m MDLe plans denoted 
by Q = {I'l,. . . ,I?"}, we associate to each plan a Markov 
matrix, A( I C ) ,  specifying the transition probabilities between 
landmarks; thus [A(k)], ,  = pz,(k) is the probability of 
ending at landmark L, given that we begin at landmark 
L, and execute plan rk. At the completion of each plan an 
observation is made, giving us information about the current 
landmark. 

It is important to note that this choice of representation 
places some restrictions on the set of landmarks and plans. 
Since the system does not know with certainty which land- 
mark it is on at the completion of a plan, the effect of 
applying each plan from each landmark must be known; 
this is precisely the meaning of the Markov matrix A(k) .  
Furthermore, each plan must guarantee that upon completion 
the system is at some landmark. A simple way of accom- 
plishing this is, of course, to completely tile the world with 
landmarks. A more economical approach, however, is to 
choose plans carefully. For example, in an office environment 
it is possible to create plans which ensure the system will 
always end up inside an office rather than in a hallway, 
though due to changes in the environment such as people 
opening or closing their doors the particular office cannot be 
specified with certainty. Thus, the use of feedback control 
laws encoded as MDLe plans enables a simplified description 
of the environment in a manner akin to that by which 
feedback can reduce the complexity of motor programs [12]. 

Iv. OPTIMAL NAVIGATION BETWEEN LANDMARKS 

In order to use local navigation techniques the robot must 
know which landmark it is on. In this section, then, we 
propose a method of finding the sequence of MDLe plans 
that drives the robot to a desired landmark with maximal 
probability, in a time-optimal manner, under the assumption 
that such sequences exist. Recent work along these lines can 
be found in [13]. 

The navigation problem described in Section 111 is nat- 
urally discrete. To find the optimal sequence we turn to 
dynamic programming (DP) [14]. The state space for the 
robot is the collection of landmarks L, the control space 
is the collection I? of MDLe plans, and the observation 
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space is the collection of equivalence classes of landmarks, 
2. Let xk, z k , u k  be the state (location), observation, and 
control respectively at time k and let k E {0,1,. . . , N } .  
We assume that we are given a sensor model for the robot; 
that is we know the distribution Pr(zk = j l x k  = i) giving 
us the probability of making observation z3 given that we 
are currently on landmark L,. Define the usual information 
vector 

(3) 
n 

Ik = (20,Z], . . . , Zk, UO, U ] .  . . . , U k - 1 )  

and the vector of conditional probabilities 

(4) 

where ’ indicates transpose and d k  = Pr(xk = jlIk) is 
the probability of being in state J!!~ at time k given the 
information up to the current time. Using Bayes rule and the 
assumption that the observation depends only on the state 
and not on the previous information or current control we 
have 

1 2  
Pklk = ( P k l k , P k l k ,  * .  . ,P&)’ 

d + l l k + l  = P r ( x k + l  =jlh+d 

( 5 )  - - P r ( z k + l l ~ + ~  = j )  P r ( z k + l  = N k ,  Q) 
P r ( Z k + l b + l  = i) P r ( z k + l  = 4&, i ~ k )  

Now define 
P k f l l k  = A ( 4 P k l k  (6) 

so that Pr(zk+l = jll;;,uk) = [Pk+,lk],. For ease of 
notation we also define the diagonal matrix 

P, = diag (Pr(zJxk = L l ) ,  . . . , Pr(zlxk = L,)) (7) 

and the vector e = (l,1, . . . , 1)’. Using this notation equation 
( 5 )  has the form 

We can then write the update equation for the conditional 
probability as the two step iteration given by 

9 + 1 1 k  = A ( U k ) P k l k  (9) 

where Polo is a known initial distribution. To proceed with 
the DP algorithm we must choose the cost function we wish 
to minimize. We first choose to maximize the probability of 
arriving at a desired landmark, denoted d, at time N .  To this 
end define the function 

-1 i f x = d  
g N ( x )  = { 1 otherwise 

We denote a policy as 7r = {PO, p1,. . . , p ~ }  where pk is 
the control function at time k.  The cost function we wish to 
minimize is 

subject to the dynamics of (9,lO). The final cost is 

J N ( P N I N )  = Ex { g N ( Z ) l l N }  
?I 

= C g N ( i )  [ P N J N ] i  = G k P N I N  (l3) 
i=l 

where we have made the obvious definition for the vector 
G N .  Applying one step of the DP algorithm yields 

J N - I ( P N - I I N - I )  = ~ ~ “ E z N  { J N ( P N I N ) }  

which simply minimizes the expected value of the cost over 
the final observation. Carrying the DP algorithm one more 
step we find the N - 2 stage cost to be 

JN-2 (PN-21N-2)  = m:nE~~-i { J N - 1  ( P N - l l N - l ) }  

D D  

The optimal control at time N - 2 is thus 

P P .  
PN-2  = argmin G’,P,,=ilA(pN-l) 

i l=l  i2=1 

- 1 = i  2 A (U) PN - 2 I N - 2 ( 1 7) 

which is the control which minimizes the expected value of 
the final cost over the last two observations. The general case 
is given by the following theorem. 

Theorem 4.1: For k = N - 1, . , 0 the optimal cost to 
go is given by 

P P  P 

J k  (Pklk) = min E.. . G’,P,,&+ 
i1=l  i z = l  i N - L = l  

.A ( P  N - 1 ) PzN - 1 =iz A (P  N - 2 )  . . . P z k +  1 =iN - A ( U )  P k  1 k 

The usual corollary yields the optimal control policy. 
Coro1Zur-y 4.2: The optimal control at time k is 

v w  W 
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A simple extension allows us to maximize this probability 
of amving at the desired landmark in the minimum amount 
of time. To this end we define the functions 

and seek to minimize the cost function given by 

J ~ ( p o l o ) =  E z k ; . k = i  ,..., N 
k=O 

The DP solution is given by the following theorem. 

go is given by 
Theorem 4.3: For IC = N - 1,. . . , 0 the optimal cost to 

D 

il=1 
v v  

il=l i z = l  
P P  

The optimal control follows immediately from this theo- 
rem. We note that while the complexity of finding the optimal 
control increases exponentially with the number of stages, it 
grows only linearly in the number of landmarks. 

v. SIMULATION RESULTS 

To illustrate the proposed representation and the derived 
optimal control laws, a simple simulator was developed. 
The robot is modeled as a direct drive system obeying the 
following nonholonomic kinematics 

Here u f  and u e  are the forward and heading velocities, 
u~ and U R  are the left and right wheel velocities, and w is 
the distance between the wheels. It is equipped with a set 
of range sensors. The environment is modeled by a set of 
polygons. The simulator accepts an MDLe plan specified as 
a list of atoms and at each time step the current interrupt 
function is evaluated. If it has fired the next atom is loaded 
and if not the control function is evaluated to determine U L  

and U R .  To model actuator noise, independent samples from 
a normal distribution are added to 'UL and to U R .  The system 

equations are then integrated forward by one time step and 
the sensors evaluated by intersecting each ray with the set 
of polygons modeling the environment. The process then 
repeats until the list of atoms is exhausted. 

is 
The office-like environment used for these simulations 
shown in Figure 1 together with a virtual robot. Three 

2 4 6 8 10 12 14 

Fig. 1. Environment and robot 

landmarks, denoted L1, La, and L3, were defined. Their 
(x, y) regions are shown in Figure 1. Each covered headings 
of (-80, -100) degrees. The following control functions 
were created. 

. 

The 

go [uf u e ] :  Applies controls u f  and ue. 
goAvoid [ufN d ICs]: In the absence of obstacles within 
d of the front, sets uf = u f N .  If an object is detected 
within d ,  sets u f  = u f N  ( d  - T m i n )  and u(9 = +k(9 with 
the sign chosen to steer away from the obstacle. (T,,, = 
distance to obstacle.) 
followwall [ufN k f  ke d]:  Maintains distance e d  heat- 
ing to wall by setting uf = -ICf(2(d-rmi,)+0)sin(B) h 

and u(9 = -ke((d - rmin) + 28) where rmin is the 
measured distance to the closest side wall and ê  is 
the estimate of the heading with respect to the wall. 
If both distance and heading errors are small then sets 

alignWal1 [Ice]: Sets u f  = 0 and ue = -IC& where 0 is 
the estimate of the heading with respect to the closest 
side wall. 
rorureilway [ k e ] :  Sets u f  = 0 and ug = -keB where B 
is the estimate of the heading with respect to the rear 
wall. 
following interrupt functions were also defined. 
wait [ T I :  Fires after T seconds. 
sideopen [side d 71: Fires if sensor on side indicated 
by side (with 1 indicating left, 2 indicating right, and 3 
indicating either) reads less than d or if T seconds have 
passed. 

uf = u fN  and ue = 0. 
h 

,. h 
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ulignedWull [$ r] :  Fires if the estimated heading with 
the nearest side wall is less than !$I or if T seconds 
have passed. 
rotatedAwuy [$ 71: Fires if the estimated heading with 
the rear wall is less than 1$1 or if r seconds have passed. 
atWaZ2 [d r]: Fires if the front sensor reads less than d 
or if r seconds have passed. 

ALz = 

A , : = ' O  

From these functions various atoms were constructed and 
from the atoms five plans were defined including the 
identity plan (denoted I[) which applies a zero control. The 
remaining four (L:, L:, L;, and Li)  were designed to steer 
the robot in the absence of noise from landmark i to i. As 
an example, plan Li  is 

0.43 0 0 AL3 = 0.12 0 0 
0.88 1 1 
1 1 1  

- O  0.57 0 ° ]  1 1 

1 0 0  0 0 1  A L ; = ' O  0 0 1  

1 - 

- 0 1 1  - 0 0 0  

{ (sideopen [3 6 51) 
(atwall [0.3 301) 
(wait [0.75]) 
(alignedwall [5 IO]) 
(wait [OS])  
(sideopen [I  6 51) 
(wait [ O S ] )  
(rotatedAway [3 0.1 51) 
(wait [ 3 S I )  
(wait 121) 
(alignedwall [ l  lo]) 

(followWall [l 20 2 0.41) 
(goAvoid [I 0.05 1 0.0251) 

(alignwall [2]) 
(followWal1 E1.25 20 2 0.41) 
(followWal1 [I  20 2 0.41) 

(rotateAway [3]) ~ 

(goAvoid [I 0.4 1 0.0251) 
(go [0 1.571) 
(alignwall [ 2 ] ) }  

(go [O 1.571) 

(go [O  1.571) 

where the notation is (interrupt) (control). This plan reads as 
follows. Follow the nearest wall until either side reads greater 
than six meters, then go straight until a wall is reached. Turn 
counter-clockwise, align along that wall, and follow it for 
half a second. Continue following the wall until the left side 
sensor reads greater than six meters. Rotate and align to the 
wall behind, move forward for three and a half seconds (but 
do not run into any intervening obstacles), and then rotate 
counter-clockwise 90°. Finally align to the wall. 

It should be noted that the plans were chosen to be 
somewhat brittle with respect to the simulated noise. In L:, 
for example, the robot attempts to detect the opening to the 
next room quickly. Due to noise the robot may not have 
moved far enough and the interrupt will fire too soon, causing 
the robot to end back on landmark two. While more robust 
plans could certainly be designed, some level of uncertainty 
was desired to show the use of the optimal controller. 

The a priori observation probabilities were chosen to be 
(with the notation Pr(i1j) = Pr(z  = ilz = L3) )  

Pr(ll1) = 0.5 Pr(112) = 0.3 Pr(113) = 0.2 
Pr(211) = 0.2 Pr(212) = 0.6 Pr(213) = 0.1 
Pr(311) = 0.3 Pr(312) = 0.1 Pr(313) = 0.7 

The Markov matrices were determined by running each 
plan 100 times from each landmark. Actuator noise was sam- 
pled from a N(0,O.Ol) dis,tribution. The resulting Markov 

0 8  

or  

0 8  

0 5  

0 4  

03 

02 

0 1  

time 

Fig. 2. L1 to L2: State evolution 

VI. CONCLUSIONS 
In this paper we presented an approach to landmark-based 

navigation for mobile robots intended for applications in 
expansive or sparse environments and designed to handle the 
noisy sensors and actuators one finds in real-world robotics. 
Under this approach the set of landmarks is viewed as a 
controlled Markov chain where the controls are feedback 
control laws encoded in a motion description language. 
Global information is thus replaced by local information 
around each landmark and the connections between those 
landmarks. 

An optimal controller was developed using dynamic pro- 
gramming that maximizes the probability of steering the 
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Fig. 3. L1 to Lz: True and observed landmarks 

~ 1 2  

Fig. 4. L1 to L2: Executed plans 

robot to a desired landmark in N steps. This controller was 
applied to a simulated robot and a typical run presented. The 
simulation shows the robustness to actuator and sensor noise 
afforded to the controller by the design of the underlying 
framework. We note that the controller presented here is quite 
simple one; more effective ones can certainly be designed. 

There are several areas of ongoing work. We are currently 
implementing the approach on a physical system in a large 
environment. Since it is not practical to run a plan thou- 
sands of times in the physical world, we are developing a 
simulator which interfaces to our implementation of MDLe 
[3] to determine the Markov matrices. We afe also exploring 
techniques to identify which landmark the robot is currently 
on, questions about when we can uniquely localize ourselves 
on a given set of landmarks (an observability question related 
to work in [13]), and how to autonomously explore an 
unknown environment and develop the Markov-chain based 
representation proposed here. 
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