
Proceedings of the 2006 IEEE FrAO0 .2
Conference on Computer Aided Control Systems Design
Munich, Germany, October 4-6, 2006

Some uses for Computer-Aided Control System Design Software in
Control Education

William S. Levine, Fellow, IEEE, and Dimitrios Hristu-Varsakelis, Senior Member, IEEE

Abstract-Several ways in which Computer-Aided Control
System Design software and rapid prototyping tools have been
used to enhance the controls educational program at our
university are described. A key to the use in a lecture course
has been to provide the students with a computer running the
software during every exam. This motivates the students to
learn to use the software and facilitates giving exam problems
that focus on control design and analysis rather than on
mechanical calculations. The use of computer-aided design
software and rapid prototyping tools in the lab saves money
and allows us to do more complicated experiments and simple
projects. It also allows us to emphasize aspects of networked
and embedded control systems that are not covered anywhere
else within our curriculum.

I. INTRODUCTION
C OMPUTER-design control system design (CACSD)

software has greatly changed the practice of control
system design. Tools such as CONDUT[1] make it

possible for control system designers to synthesize
controllers that satisfy very complex and elaborate
specifications. However, as evidenced by the available
textbooks for undergraduate courses in control, the CACSD
software has had relatively little impact on the standard
controls curriculum. We have been experimenting for
several years with the use of MATLAB/Simulink and
several of their control system design adjuncts in our basic
undergraduate controls course and in a separate controls
laboratory course. This article describes what we have tried,
what we think are appropriate uses of the software, and
some indications of our successes and failures.
The reason for this article is to share information, start

discussion, and, hopefully, to assist in the evolution of a
consensus on how these new tools should change the
curriculum. We are well aware that others are doing similar
and related things and that some of their efforts are much
better than ours. Some examples include [2]. We are also
aware that some of our experience is unique to our
institution and not necessarily applicable elsewhere.

The paper is organized as follows. The next section
describes the context of our experiments and the background
necessary to understand and evaluate what we have done.

Manuscript received January 19, 2006. This work was supported in part
by the National Science Foundation under CRD Grant 0088081.

W. S. Levine is with the Department of Electrical and Computer
Engineering, University of Maryland, College Park, MD 20742 USA
(phone: 301-405-3654; fax: 301-314-9281; e-mail: wslo eng.umd.edu).

D. Hristu-Varsakelis is with the Department of Applied Informatics,
University of Macedonia, Thessaloniki, Greece

This is followed by a description of what we have done in
our undergraduate course. We next describe our controls
laboratory. We conclude with an assessment of our results.

II. BACKGROUND

The Department of Electrical and Computer Engineering
(ECE) at the University of Maryland offers two
undergraduate courses in control. The two courses must be
largely independent because of some aspects of the overall
undergraduate curriculum that are peculiar to Maryland.
Firstly, state law requires that students be able to transfer
from their local community colleges to our program at the
end of their sophomore year without loss of time or credits.
The community colleges teach all of the required courses in
the first two years of the Department of ECE curriculum.
The key beginning systems course (The title is Signals and
Systems) covers linear time-invariant systems at an
introductory level and is taught in the third (junior) year.
This course is the sole prerequisite for the undergraduate
controls courses.

The two courses are entitled, "Control Systems," and
"Digital Control Systems," respectively. The control
systems course is basically devoted to classical feedback
control. It is this course that has been modified to take
advantage of modem computer-aided control system design
(CACSD) tools. The digital control course has also been the
subject of considerable experimentation but not as much in
the use of CACSD.

Undergraduate courses are largely linked to textbooks.
While it is certainly true that innovative teachers can and do
teach entirely from personal notes, this is relatively rare at
the undergraduate level. Thus, the most commonly used
textbooks largely define the syllabus. Two of the most
popular undergraduate controls texts are Dorf and Bishop
[2] and Franklin and Powell [3]. They cover pretty much
the same material. Both include a fair amount ofMATLAB
but no serious use of CACSD software. As will be
explained shortly, they do not make as much use of even the
CACSD tools that are included with MATLAB as we
believe is desirable. In fact, we have not found a textbook
that really integrates computer-aided design tools into the
subject. One reason for this article is to encourage this to
change.

The controls laboratory course is available to seniors and
graduate students in the electrical and computer, mechanical,
and aeronautical engineering departments. It has also been

0-7803-9797-51061$20.00 ©2006 IEEE 2281

taken by students in the math and computer science
departments. The course is jointly operated, supported and
listed by the ECE and Mechanical Engineering (ME)
Departments. This has several important advantages but it
also introduces some complications. The main pedagogical
advantage results from the ME students having considerably
more laboratory experience than those from ECE while the
ECE students generally have better theoretical training. By
pairing an ME with an ECE we get the students to teach
each other. There is also a substantial cost savings; more
than twice as many students are taught for nearly the same
cost. The major difficulty, not entirely due to the joint
nature of the course, is that we cannot make a controls
course a prerequisite for the lab. The other difficulties are
minor and mostly administrative.

III. THE UNDERGRADUATE CONTROLS COURSE

As was explained earlier, the course is primarily devoted
to classical feedback control. Thus, we have used both of
the textbooks mentioned earlier. We have also experimented
with a very modem approach to this subject based on the
textbook by Goodwin, Graebe, and Salgado [4]. The main
novelty in the course is that all the exams are given in a
computer classroom every student has a computer on his
or her desk throughout the exam. The student has a choice
of using the computer or pencil and paper to solve each
exam problem. This arrangement was made in response to
student complaints about an earlier version of the course in
which the students were taught and encouraged to use
MATLABR in doing their homework but the exams were
conventional pencil and paper tests. Their feedback was that
they wanted the same tools available on the exams as for
their homework.

The availability of software to plot root loci, Bode and
Nyquist plots, and Nichols charts changes, at a minimum,
the questions that one can sensibly ask on the exams. Of
course, the real point is that this also changes the material
that one should teach. Furthermore, using the single-input-
single-output (SISO) control design GUI sisotool (We
indicate MATLAB commands by bold-face type), and its
analysis menu, the students can also watch, for example, as
the step response of the closed-loop system changes in
response to their changes in the controller parameters. This
alters the role of the various design rules of thumb found in
most textbooks.

The course is taught in a classroom that has a computer
and a display setup so the instructor can demonstrate the use
of the various tools. The students are encouraged to
experiment on the computer on their own. On several
occasions this had meant that the students introduced the
professor to the latest MATLAB tool.

So far we have primarily described only the tools
available to the students during exams. These same tools are
also available when they do their homework. This does not
require them to have their own computer. There are many
computers available on campus for students to use when the

need arises. How does the easy availability of these tools
change the syllabus?

There are two major changes. First, the amount of time
spent on teaching students to plot root loci, Bode and
Nyquist plots, and Nichols charts can be drastically reduced.
Notice that we did not say omitted. One subject that is
omitted is the Routh-Hurwitz criterion. Our students can
simply use MATLAB to compute all the roots of any
polynomial with real coefficients. Second, the time spent on
control system design, and on deeper aspects of control, can
be significantly increased. We still spend the first part of
one lecture on the simplest rules for plotting root loci. We
believe that this helps the students understand the meaning
of the plots. Despite our best efforts, too many of them
remain confused for a little while over open loop versus
closed loop in interpreting the plots. This generally corrects
itself after the first exam. We also give examples of
incorrect plots including a case where the input data is
correct. Specifically, we show them that MATLAB does not

factor (s + 1)'5 correctly. The important question is how
best to convey a deep understanding of the root locus. We
do not believe that either plotting root loci by hand or
knowing how to do so enhances understanding as much as
knowing the limitations of the algorithms and seeing many
root locus plots. We also ask our students to create
"interesting" root locus plots. This gets almost no response.
We introduce the frequency response plots by briefly

describing the basics of the Bode plot. Many of the students
have seen Bode plots before in the signals and systems
course but this apparently makes very little impression on
them. We do discus the plots for one and two-dimensional
systems in normalized form. We believe this helps the
students understand the idea and it previews the
development of lead and lag compensators and notch filters.
We do not spend any time on drawing Nyquist plots. We

do teach them the Nyquist stability criterion. We then use
the MATLAB Nyquist plots to illustrate the perils of
accepting automatically scaled plots as the truth. We show
them, and assign homework that emphasizes this, that the
automatic scaling frequently hides crucial features of the
plot resulting in incorrect assessments of stability. The
lesson is somewhat undercut by the ease with which
students can check stability in other ways, specifically using
the root locus. This could be fixed with some help from the
Mathworks. What is needed is a way for the instructor to
hide the system that produced the frequency response from
the students while still giving them all the data contained in
the plots. This would emulate the practical control design
situations where the designer has an experimental frequency
response but no analytical model.

The Nichols chart is an extremely useful design tool that
is underemphasized in the usual undergraduate course
because of the difficulties of drawing the plots. This need
not be true any longer. We devote a lecture to explaining
the Nichols chart and its use in determining the closed-loop

2282

frequency response from the open-loop frequency response.
Again, forcing students to work from frequency response
data without access to an exact analytical model would
enhance the lessons and the course. The reason this is
necessary is that the students can exploit the analysis menu
in sisotool to watch the changes in the closed-loop
frequency response as they vary the parameters of the open-
loop system if they have an analytical model. Allowing the
instructor to create a plant that is unavailable to the students
would facilitate homework and exam problems dealing with
robustness, noise rejection, and modeling.

Notice that we have shifted the emphasis in the course
away from how to create the needed plots. Instead, we
devote considerable time to how to design SISO control
systems. The CACSD tools allow us to emphasize three
nonlinear aspects of controller design, all resulting from the
simplest and most common nonlinearity, actuator saturation.
These are integrator windup, conditional stability, and
performance degradation. By checking the closed-loop
transfer function between overall input and the input to the
actuator, the students can see directly the consequences of
placing the poles and zeros of their compensators too far
apart. They can also easily check the different sensitivity
functions. All of these are obtained from the analysis menu
in sisotool.
We have also experimented with teaching the students

how to do pole placement for single-input systems when the
state is available. This gives a brief introduction to state
space methods. The difficulty of finding a controller that
does not require impractical gains tends to be discouraging
to the students.

It should be apparent that we have taken a very
conservative approach. We have not completely eliminated
discussion of how to create the plots by hand. A case can be
made for doing that. However, we do not believe there is
much value in having students do even one plot by hand.

The emphasis on design in our course and the availability
of the CACSD tools makes almost all of the problems in the
common textbooks very simple for our students, one might
say too simple. We create homework problems in which
they are given a system in transfer function form and a set of
specifications the controller must satisfy. We then ask them
to create a satisfactory design. We also give "design"
problems of the same sort on the second exam and the final.
Grading is a bit of a nuisance because the answers are not
unique. We check their answers by inputting them into
sisotool and determining whether their controller meets the
given specs, or not. Typically, many students overly
complicate these design problems and produce controllers
that have more poles and zeros than is necessary.
We have not performed a scientific assessment of the

effect of these changes on student's learning. Anecdotally,
they are pleased with the sense of really doing engineering
rather than solving academic problems. We emphasize for
them that the course does not deal with many aspects of real

controller design, for example, with the choice of hardware.

IV. THE LABORATORY COURSE

The laboratory course begins with a sequence of standard
experiments and ends with a small project. The students
work in teams of two except when we have an odd number
of students in the section. Then one team consists of three.
We deliberately avoid larger teams because we have found
that larger groups tend to include passive drones students
who do no work. Because large teams are a requirement for
the accreditation of capstone design courses, the controls lab
is not a capstone design course.

There is a one hour common lecture and three hours of
lab each week. We try hard to avoid having students devote
extremely large amounts of time to this course. We do not
think it is good for them to sacrifice their other courses in
the interest of completing their projects.

The standard experiments are intended to achieve 5 goals,
to teach the students that the real system is not the same as
its theoretical model and the most common and important
differences, to teach the students how to function in a
laboratory (i.e., to observe, to debug, to record, and to
document), to familiarize the students with the available
equipment, to show the students how to find and buy the
appropriate hardware for their projects, and to introduce the
students to networked and embedded control.

The four experiments are not at all novel. They were
purchased from Quanser but could have been obtained from
several other vendors. They are, in the order in which they
are performed, the coupled water tanks, the heat flow, a
simple servomechanism, and the rotary inverted pendulum.

All of the controllers are digital. In fact, they are
implemented on a pair of PCs. The two PCs at each station
share a keyboard and a display. One of the PCs is equipped
with a Quanser MultiQ-PCI card for data acquisition and
output. All of the computers in the lab are linked via a
wireless communication network.

The controller normally is coded using
MATLAB/Simulink on the PC that does not have a DAC
card and then the code is compiled and downloaded onto the
other PC using the MATLAB/Simulink Real Time
Workshop (RTW). However, the code can be written and
run on the DAC-equipped machine alone. In fact, the code
can be downloaded to any of the DAC-equipped computers
in the lab and that computer can run the control. We have
had the students do this to emphasize the network aspects of
the course and, occasionally because of a failed machine.

This approach makes it seem superficially to the students
that their controller is a Simulink block diagram. This has
the advantage that coding the controller is simple, intuitive,
and in a language the students already know. This keeps the
focus on the controller and off the coding. The
disadvantage, eventually corrected by experience, is that
students sometimes forget that they are dealing with
computer code. We emphasize that none of this is

2283

particularly novel, nor is it unique to our lab. Anyone can do
this relatively easily and others have.

The coupled water tanks experiment is very well liked by
the students. They do a detailed calibration of the sensor
and actuator, identify the parameters of a nonlinear model of
the system dynamics, design and implement a P and a PI
controller, and implement several other linear controllers
near a nominal operating point. This experiment is an
especially good example of PI control with integrator
windup. For many students this is the first time they have
designed and implemented a system that they can see
working.

The students do not like the heat flow experiment. The
dynamics are very slow so it takes a long time to collect data
and calibrate. We are not able to measure the actual
temperature inside the tube so the control is to a voltage, not
a temperature. The best part of the experiment is the
measurement of the delay and the determination of a model.

The servomechanism experiment is also well-liked. It is
the first one where we really emphasize digital control. We
do this in three ways. First, we ask them to implement a
safety shut off. If the input to the motor is not set to zero
before the computer stops control, the rod on the motor shaft
usually swings wildly when the computer does stop
controlling the motor. Second, we have them do a system
identification using MATLAB's ident tool. This is not great
for the motors but it is an excellent introduction to system
identification for the students. The resulting model is an
ARX discrete time system. Lastly, we ask them to
implement a discrete-time controller.

The rotary inverted pendulum is everybody's favorite. It
is done in two parts. The students are given the linear
quadratic regulator (LQR) solution which they implement
using a crude estimator for the pendulum angular velocity.
All the other state variables are measured. They are then
given an intuitive idea of how to invert the pendulum and
asked to design by themselves a controller that will invert
the pendulum and then switch to the LQR when the
pendulum is close enough to vertical. This is a switching
controller so, very decidedly a hybrid controller. They work
very hard at this. They need to rely on their experimental
and analytical skills. It has taken some of the groups a long
time to succeed. They have all been very highly motivated
to do so and, so far, every group has eventually built a
working controller.

Our university has an open house every year about the
time the students complete the pendulum experiment. We
invite them to demonstrate their controller. Many do and
they clearly take great pride in what they have done. They
also provide very nice explanations of how their controller
works.

Student projects are a very important aspect of the course.
The projects have two primary goals, to teach the students
that a major part of control system design is to choose the
sensors and actuators and to teach the students to properly

document their work. The very short time period available
to complete the projects limits their complexity and heavily
influences the course schedule.

Preliminary written proposals for the projects are due two
weeks after the course begins. These are short, less than a
page. They basically describe the system to be designed and
built. We ask the students to implement their controller in
the lab's PCs. This saves time, money, and simplifies the
design. Because most of the students have no previous
experience with the lab hardware it is very difficult for many
of them to produce this preliminary proposal on time. We
allow two additional weeks but we strongly encourage
promptness. The student response has improved
considerably over the years. Apparently, the grapevine
warns them and they respond by arriving in the first class
with some ideas. We have also noticed that the recent
students are more likely to have found a project idea on the
web than in the past. We encourage this.
Most of the preliminary proposals are too ambitious. It is

notable that most of the students have no concept of how
difficult and time-consuming it is to design and build a
system. We discuss each proposal privately with the
students and mutually agree on a project. We insist on
systems projects unless at least one of the team has
experience designing and building electronic or mechanical
devices. That is, we ask the students to buy all the
components of their project and assemble the system. Of
course, they also have to create the controller on the
computer and get it to work.
A detailed proposal is then due four weeks later. This

proposal is expected to contain a detailed project plan and a
parts list, with prices and suppliers. We need this early
because of the lead time needed to purchase items through
the university. Often, students use their own money to buy
components for the lab in order to save time although we do
not encourage this. Although they have all had a first year
course that is supposed to teach them how to find parts and
devices that can be bought for projects, we frequently have
to demonstrate this.

The detailed proposals are reviewed immediately upon
receipt. Occasionally changes are suggested. Components
are ordered once the proposal is approved. The next step is
to complete the design and build the system. This is not the
last step. A final report is required. The instructions for the
final report are to produce a document that would allow a
student, similar to yourself, to duplicate your project exactly,
including any experimental results.
An important aspect of the projects is that the students are

given permission to fail. That is, their project does not have
to result in a working system in order to be regarded as a
success. This has important implications for the proposals
and for the final reports. A proposal does not have to
demonstrate that the planned project will succeed. We tell
the students, and we expect, that only about 1/2 to 2/3 of the
projects will result in a working system. As long as the

2284

final report properly documents what went wrong and
explains why the failure occurred the grade can be, and
usually is, as high as if the project succeeded. Of course, a
project that fails because of lack of effort by the students
receives a poor grade. We have on several occasions used a
failed project from the previous year as a project, building
upon the prior experience.
What sort of projects can the students do in the available

time? Almost every year a proposed project is to control a
ball on a planar plate by controlling the corners of the plate.
We suggest doing a ball and beam instead. Even this is hard
for them to do in the allotted time. In fact, no one has
successfully completed this project so far. However, each of
the groups that have attempted this project has worked
extremely hard, done creative and original mechanical
design, found and bought unusual hardware, and, in my
opinion, learned a great deal. This illustrates the benefits of
allowing students to receive full marks for ambitious
projects that do not fully succeed.

Another class of projects that are frequently proposed is
some sort of robot car that tracks a given path. We suggest
that they buy the car, install a sensor, and implement a
computer control using the lab computers. Obstacle
avoidance versions of this project almost always are
successful. Path tracking ones are often successful but have
a higher failure rate.

Despite the unhappiness with the heat flow experiment,
many students propose some sort of temperature control
project. For example, one group proposed to design and
build a controller for the oil temperature in a french fry
maker. We suggested that maintaining tight control over the
temperature of water would be just as interesting and
educational and a lot less messy and dangerous. Most of
these projects succeed to some extent. Sensing and
actuation tend to limit the achievable control.
One pair of students proposed a pH control using the

apparatus for the coupled tanks experiment. The pH sensor
proved to be a problem, especially after someone dropped
and broke it. We plan to try this one again.

Several students have entered the class with very good
experimental backgrounds. One, who was already working
part time as an engineer designed and built a tiny automated
walking bug. Although the project was interesting I don't
think we taught him very much.

prototyping tools has allowed us to do more complicated
experiments and projects while keeping the cost of the lab
comparatively low. We could have saved more money by
building a lot of the experiments ourselves but the cost in
terms of faculty time and effort would have been
prohibitive.
As we have emphasized, we do not claim to have made

any important innovation. Others have done much more
exciting things in both the classroom and the laboratory. If
you are one of them we would very much like to hear from
you. We believe it would be very useful to exchange ideas
and experiences relative to using modem CACSD tools in
education. We also believe it is very important to do this.
To learn more about our controls lab, please visit

www.isr.umd.edu/ISR/FacultyBios/Levine bio.html and
click on the undergraduate controls laboratory.

ACKNOWLEDGMENT

The laboratory course is the result of the combined vision
and efforts of Gregory C. Walsh, Dimitris Hristu-Varsakelis
and William S. Levine.

REFERENCES
[1] M.B. Tischler, J.D. Colbourne, M.R. Morel, D.J. Biezad, K.K.

Cheung, W.S. Levine, and V. Moldoveanu, "A multidisciplinary flight
control development environment and its application to helicopter,"
IEEE Control Systems Magazine, vol. 19 (4), pp. 22-33, Aug. 1999.

[2] http:/www.control.lth.se/education/processes/
[3] R.C. Dorf and R.H. Bishop, Modern Control Systems (Tenth Edition).

Upper Saddle River, NJ, Pearson Prentice Hall, 2005.
[4] G.F. Franklin, J.D. Powell, and A Emami-Naeini, Feedback Control of

Dynamic Systems (Fourth Edtion).Upper Saddle River, NJ, Prentice
Hall, 2002.

[5] G.C. Goodwin, S.F. Graebe, and M.E. Salgado, Control System
Design, Upper Saddle River, NJ, Prentice Hall, 2001.

V. CONCLUSION
With regard to the lecture course, providing the students

with a computer that has MATLAB during the exams has
been an unqualified success. Because of this the students
really commit to learning to use MATLAB. The focus of
the course has shifted to control design and analysis and way
from generating plots. The door has opened to much more
sophisticated use of the computer and CACSD tools in the
course.

With regard to the lab, the use of computer-aided rapid

2285

