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Abstract. We revisit the problem of “sending information into the future” by
proposing an anonymous, non-interactive, server-based Timed-Release Encryp-
tion (TRE) protocol. We improve upon recent approaches by Blake and Chan,
Hwang et al., and Cathalo et al., by reducing the number of bilinear pairings that
users must compute, and by enabling additional pre-computations. Our solution
compares favorably with existing schemes in terms of computational efficiency,
communication cost and memory requirements, and is secure in the random ora-
cle model.
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1 Introduction

Timed-Release Encryption (TRE) is a special field of cryptography that studies the
problem of “sending information into the future”, i.e., encrypting a message so that it
cannot be decrypted by anyone, including the designated recipients, until a future time
chosen by the sender. This problem was originally posed in [22] and then explored
further in [27].

There are numerous applications in distributed computing and networks that re-
quire TRE, such as sealed-bid auctions in which one seeks to provide assurance that
bids cannot be opened by anyone (including the auction board) before the end of the
bidding period [27], payment schedules, and key escrow. Other examples include the re-
lease of important documents (e.g., memoirs, wills, press articles) [27]; e-voting which
requires delayed opening of votes [26]; internet programming contests, where partici-
pating teams cannot access the challenge problem before thebeginning of the contest
[3]; delayed verification of signed documents, such as lottery [29] and check cashing,
contract signing [14], and verification of online card game results [13].

Solutions to the TRE problem follow one of two basic techniques. The first is based
on so-called time-lock puzzles [24, 27, 1], [8, 18, 19], where the receiver must perform
non-stop, non-parallelizable computation in order to recover a message. Although this
approach does not involve a trusted third party, it puts immense computational overhead
on the receiver, it makes encryption dependent on the receiver’s CPU speed, and does
not guarantee that the message will be retrieved at a precisemoment in the future.
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To sidestep these problems, a second approach developed, based on the use of trusted
time-servers. The server-based approach relieves the receiver from performing non-
stop computation, and can specify the decryption time with precision. The trade-off is
the required interaction between the (trusted) server and the users. To ensure security,
scalability and anonymity, a time-server should have as little interaction as possible with
the users. Ideally, this server should not be involved in theencryption or decryption
process, and should only provide a common time reference by periodically releasing
unforgeable, time-embedded information, which will be used to decrypt timed-release
ciphertexts. The vast majority of the early attempts at TRE did not satisfy this last
requirement.

In the early nineties, [22] proposed a system where the server is a trusted escrow
agent, storing messages and releasing them to the designated recipients at specified
times. That approach did not provide anonymity, and the server knew the content of the
message and its release time. Another approach, combining symmetric and asymmetric
encryption, was proposed by [27]; it required active interaction between senders and
server, and thus guaranteed anonymity only for receivers. To provide sender anonymity,
[16] proposed a solution in which interaction was needed between the server and the
receiver only. In that scheme, the receiver’s anonymity is compromised because server
and receiver must engage in a conditional oblivious transfer protocol.

Recently, there have been attempts to use bilinear pairing-based schemes for TRE.
The work in [7] mentioned TRE as one of the possible applications of Identity Based
Encryption (IBE), and [25] implemented that idea. AlthoughIBE is certificate-less,
their scheme was not scalable, because the server must generate and transmit to each
receiver a unique secret key, corresponding to a specific time instant. Other TRE ap-
proaches allow the recovery of past time-specific trapdoorsfrom a current trapdoor.
Among them are the protocol in [6] which uses the tree-like structure of [9] backwards,
and [13] which uses a hash chain for the construction of the trapdoors. In both cases, the
root of the tree-like structure and the hash chain, respectively, correspond to the “last”
time instant for which a trapdoor can be produced, which implies an upper bound on
the lifetime of their systems.

The first attempt at scalable, server-passive, user-anonymous TRE was due to Blake
and Chan [3], as recently as three years ago. The breakthrough of that pairing-based
approach is that the server does not interact with either thesender or the receiver; its
sole responsibility is to provide a common time reference byreleasing time-specific
universal(i.e., receiver-independent) trapdoors. In fact, the server need not even be
aware of the existence of a sender or receiver; hence, user anonymity and message
privacy are guaranteed. That work has formed the basis for the majority of modern TRE
schemes [26]. Hwang, Yum and Lee [20] proposed a user-anonymous TRE scheme
that had similarities with that of Blake and Chan but could also provide a pre-open
capability, meaning that the sender can decide to allow “early” decryption by issuing
to the receiver a secondary trapdoor (different from the oneto be given later by the
time server). Another efficient anonymous TRE scheme that can take advantage of pre-
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computations1 — and forms the point of departure for this work — was proposedby
Cathalo, Libert and Quisquater [10].

The contribution of this paper is to combine the desirable properties of existing TRE
schemes in order to create a new, efficient, server-passive,provably-secure, pairing-
based, user-Anonymous TRE protocol (termed AnTRE). A key advantage of our proto-
col is its simple public key format which enables pairing pre-computations and leads to
significant computational savings. Recently-proposed TREschemes either use a more
complex public key format [3, 10], thus requiring pairing-based verification of users’
public keys, or lack support for pre-computations [3, 20]. In terms of computational ef-
ficiency, our protocol is more than twice as fast as the best existing approaches when
sending tounknownreceivers, while also comparing favorably when sending thesame
information to multiple (more than two) receivers. Moreover, under our approach, the
amount of data (public keys and pre-computed values) to be stored in the sender’s ma-
chine is very small compared to that of other schemes [10]. Inour scheme, as in [3],
the time-server does not need to store any of the required trapdoors, since it can gen-
erate them on demand, using its own private key. Moreover, the time-server has a pas-
sive role and its sole responsibility is to periodically publish time-specific trapdoors,
avoiding any interaction at all with either the sender or thereceiver, thus providing
user-anonymity.

The remainder of this paper is organized as follows. In Section 2 we define our
model for anonymous TRE. In Section 3 we describe the proposed protocol and its
security properties. Section 4 compares our protocol with three of the best-known TRE
approaches in terms of computational efficiency and memory usage.

2 TRE Model

2.1 Modeling a user-anonymous TRE scheme

There are two types of entities involved in a general TRE scheme: a trusted time-server
that periodically issues authenticated time-specific trapdoora, and users that act either
as senders or as receivers. In this work, we assume that ciphertexts always contain in-
formation about their release-time. We will letT ∈ {0,1}τ, τ ∈ N denote time. For
instance,T could indicate theτ-bit string representation of a specific time instant (e.g.
T = “10:00AM, October 10, 2007 GMT from the Denver Atomic Clockused in Global
Positioning System (GPS)” ). Based on these assumptions, ananonymous TRE scheme
(AnTRE) consists of a quintuple of polynomial-time algorithms:

AnTRE.Setup: It is run by the time-server; it takes as input a security parameter1k,
and returns system parameters params that include the server’s public key, spub, for
which the corresponding private key, spr, is securely stored, to be used in the genera-
tion of all time-specific trapdoors.

AnTRE.ReleaseT is run by the time-server; given the server’s private key spr, and

1 By pre-computation we mean that some of the calculations necessary to run a protocol can be
performed off-line, prior to specifying a message or a receiver
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a time T∈ {0,1}τ, it returns a verifiable time trapdoor sT .

AnTRE.KeyGen: This is a key generation algorithm run by a user. Its inputs are a
security parameter1k and the system parameters params; it returns a private/public
key pair(upr,upub).

AnTRE.Enc is run by the sender of a message m. It takes as inputs the system pa-
rameters params, the message m, the release time T∈ {0,1}τ, and the public keys of
both receiver and time server (upub and spub respectively), and returns a ciphertext C
that the recipient must be unable to decrypt before being given the trapdoor that is to
be published by the server at a later time.

AnTRE.Dec: This is a decryption algorithm that takes as inputs a ciphertext (C,T),
the system parameters params, a private key upr, and a time-specific trapdoor sT , and
returns a plaintext m or an error message.

2.2 Adversarial Models

We distinguish between two kinds of adversaries. One is a so-calledoutsideattacker
that models a “curious” time-server (i.e., one that knows the time-specific trapdoor for
any time) trying to decrypt a ciphertext he may have intercepted. This attacker is chal-
lenged on a random user’s public key for which he is equipped with a decryption oracle.
A second adversary is aninsideattacker that models a malicious, “impatient” receiver,
trying to decrypt a ciphertext before its designated release time. In that case, the ad-
versary has knowledge of the receiver’s private key, but does not have any information
about the time-server’s private key and the specific trapdoor that will be published at
the appointed time. We assume that an inside attacker can freely choose the public key
on which he is challenged in a “find-then-guess” game, to be made precise shortly. The
adversary can also access a release-time oracle returning trapdoors for any time pe-
riod, except the one for which the challenge ciphertext is computed. Furthermore, in a
chosen-ciphertext scenario, he is given access to an oracledecrypting other ciphertexts
than the challenge. In the AnTRE model, this adversary is called chosen-time period
and ciphertext attacker (CTCA).

Definition 1 ([10]). Let A be an outside adversary. An AnTRE scheme is said to be se-
cure against chosen-ciphertext attacks (IND-CCA secure) if no polynomially bounded
adversaryA has a non-negligible advantage in the following game:

1. A challenger, CH, takes a security parameter1k and runs AnTRE.Setup(1k) and
AnTRE.KeyGen to obtain a list of public parameters, params,and a key pair (upr,
upub). The public key upub, params, and the server’s private key, spr, are given toA ,
while the private key, upr, is kept secret.

2. A has access to a decryption oracle, AnTRE.Decrypt(.), whichgiven a ciphertext
(C, T ) and the time-specific trapdoor sT (always computable by anyone who knows
spr), returns the decryption of C using the private key upr. At some point,A outputs
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two equal-length messages m0, m1 and a challenge time-period T∗. He gets a cipher-
text (C∗,T∗) = AnTRE.Encrypt(mb,upub, params,T∗), for b

R
←−{0,1}, computed un-

der the public key upub.

3. A issues a new sequence of queries but is prohibited from asking for the decryp-
tion of the challenge for the time period T∗. He eventually outputs a bit b

′
, and wins if

b
′
= b. His advantage is AdvIND−CCA

AnTRE,A (A) := |Pr[b
′
= b]−1/2|.

Definition 2 ([10]). Let A be an inside adversary. An AnTRE scheme is said to be se-
cure against chosen-time period and ciphertext attacks (IND-CTCA secure) if no poly-
nomially bounded adversary,A , has a non-negligible advantage in the following game:

1. The challenger, CH, takes the security parameter1k and runs AnTRE.Setup(1k) to
return the resulting public parameters params toA . The server’s public key, spub, is
given toA , while the corresponding private key, spr, is kept secret.

2. A has access to a release-time oracle AnTRE.ReleaseT(.) returning trapdoors sT
for any time T .A is also given access to a decryption oracle, AnTRE.Dec(.), which
given a ciphertext C and a receiver’s public key, upub, provided byA , computes the de-
cryption of C using sT , but without knowing the corresponding user’s private key upr.
At some moment,A outputs messages m0,m1, an arbitrary public key u∗pub, and a time
instant T∗ that has not been submitted to the AnTRE.ReleaseT oracle. Hereceives the
challenge(C∗,T∗) =AnTRE.Enc(mb, u∗pub, params, T∗), for a hidden bit b

R
←−{0,1}.

3. A issues a new sequence of release-time queries for any time instant T∗ and de-
cryption queries for any ciphertext but the challenge(C∗,T∗), for the public key u∗pub.

He eventually outputs a bit b
′
and wins if b

′
= b. His advantage is AdvIND−CTCA

AnTRE,A (A) :=

|Pr[b
′
= b]−1/2|.

3 Proposed Protocol

In order to construct time-specific trapdoors, we will use the short signature scheme
from [4] and [30]. This scheme was initially used in the selective-ID secure IBE in [5]
which was proven to be secure without random oracles. In our case, the proposed TRE
protocol detailed below is based on the anonymous TRE protocol in [10], the first to
make use of such signature schemes for TRE purposes. Its security proofs hold in the
random oracle model [2]. In the following, we describe the proposed protocol, named
AnTRE. We will sometimes refer to AnTRE as the “full” versionof our protocol, in
order to distinguish it from its simpler, “basic” counterpart which is used in the security
proofs and is included in Appendix A.

3.1 Preliminaries

For the purposes of this work, we will require an abelian, additive finite groupG1, of
prime orderq, and an abelian multiplicative group,G2, of the same order. For example,
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G1 may be the group of points on an elliptic curve. We will letP denote the generator
of G1. Also,H1, H2, H3, H4 will be four secure hash functions, withH1 : {0,1}τ 7→ Z∗q,
H2 : {0,1}n 7→ {0,1}k, H3 : G2 7→ Z∗q, H4 : G1 7→ {0,1}n+k0, wheren,k0 ∈ N. Finally,
e : G1×G1 7→G2 will be a bilinear pairing, defined below.

Definition 3. Let G1 be an additive cyclic group of prime order q generated by P, and
G2 be a multiplicative cyclic group of the same order. A mapê: G1×G1 7→G2 is called
a bilinear pairing if it satisfies the following properties:

– Bilinearity: ê(aV,bQ) = ê(bV,aQ) = ê(abV,Q) = ê(V,abQ) = ê(V,Q)ab for all
V,Q∈G1 and a,b∈ Z∗q.

– Non-degeneracy: there exist V,Q∈G1 such thatê(V,Q) 6= 1.
– Efficiency: there exists an efficient algorithm to compute the bilinear map.

Admissible bilinear pairings can be constructed via the Weil and Tate pairings [21].
For a detailed description of pairings and conditions underwhich they can be applied
to elliptic curve cryptography, see [21, 28].

3.2 Full Version of AnTRE

To send a messagem that will be decrypted at (or after) a pre-defined time instant T,
the following protocol is to be executed (see also [12] for tabular form):

AnTRE.Setup: given security parametersk andk0, wherek0 is polynomial ink, the
setup algorithm:
1. Outputs ak-bit prime numberq, two groupsG1, G2 of orderq, an admissible bilinear
mapê : G1×G1 7→G2 and an arbitrary generatorP∈G1.
2. Chooses the cryptographic hash functionsH1 : {0,1}τ 7→ Z∗q, H2 : {0,1}n+k0+τ 7→

{0,1}2k, H3 : G2 7→ Z∗q, H4 : G1 7→ {0,1}n+k0+2k for somen,τ ∈ N. These functions
will be treated as random oracles when it comes to security considerations.
3. Generates the time-server’s private key,s

R
←−Z∗q, and the corresponding public key,

S= sP∈G∗1.
4. Chooses the message spaceM = {0,1}n and the ciphertext spaceC = G1×G1×
{0,1}n+k0+2k+τ.
The public parameters areparams:= {k,k0,q,G1,G2,P,S, ê,H1,H2,H3,H4,n,M,C}.

AnTRE.ReleaseT:given a time instantT ∈ {0,1}τ, its hash valuet = H1(T), and the
server’s private keys, it returns the time-specific trapdoorsT = (s+ t)−1P∈G

∗
1.

AnTRE.KeyGen: given params, it chooses a private keyb ∈ Z∗q and produces re-
ceiver’s public keyB = bP∈G

∗
1.

AnTRE.Enc: to encryptm∈ {0,1}n using the time informationT ∈ {0,1}τ and the
receiver’s public keyB, the sender executes the following:
1. Choosex

R
←−{0,1}k0, computet = H1(T) ∈ Z∗q andh = H2(m||x||T) ∈ {0,1}2k and

getr1, r2 ∈ Z∗q, wherer1||r2 = h̄, whereh̄ denotes the 2k-bit integer value ofh.
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2. Computec1 = r1S+ r1tP∈G∗1 andc2 = r2P∈G∗1.
3. Computed = H3(ê(P,P)r1) ∈ Z∗q.
4. ComputeK = H4(dr2B)∈ {0,1}n+k0+2k and thenc3 = (m||x||h)⊕K ∈ {0,1}n+k0+2k.
The ciphertext isC := 〈c1,c2,c3,T〉.

AnTRE.Dec: givenC := 〈c1,c2,c3,T〉, the trapdoorsT and his private keyb, the recipi-
ent computesd = H3(ê(c1,sT))∈G1, and the session keyK = H4(dbc2)∈{0,1}n+k0+2k.
He is then able to retrieve the message asm||x||h = K⊕ c3. To verify the message, he
checks whetherH2(m||x||T) = h.

The following two theorems (proofs are included in AppendixB) concern the se-
curity properties of AnTRE. In particular, the proposed protocol is secure against IND-
CTCA and IND-CCA attackers.

Theorem 1. Assume that a polynomial-time IND-CTCA attacker has a non-negligible
advantageε(k) against AnTRE when making qHi queries to random oracles Hi ∀i ∈
{1,2,3,4} and qT time server queries. Then the q-BDHI2 problem can be solved (in
polynomial time) with non-negligible probability.

Theorem 2. Assume that a polynomial-time IND-CCA attacker has a non-negligible
advantageε(k) against AnTRE when making qHi queries to random oracles Hi ∀i ∈
{1,2,3,4}. Then the CDH3 problem can be solved (in polynomial time) with non-
negligible probability.

4 Comparisons

In this section, we compare AnTRE with three of the best-known existing approaches to
non-interactive server-based anonymous TRE: the BC-TRE scheme proposed by Blake
and Chan [3], HYL-TRE proposed by Hwang, Yum and Lee [20, 15],and CLQ-TRE4

proposed by Cathalo, Libert and Quisquater [10].

4.1 Computational Efficiency

Because some of the protocols mentioned previously allow for pre-computations under
certain circumstances, we distinguish between three casesof anonymous TRE: i) mes-
sage transmission tounknownreceivers, ii) transmission toknownreceivers (in which
case there is no need to verify their public keys), and iii) messages sent to multiple
recipients with the same release-time.

For the purposes of calculating the computing time needed torun each protocol, we
will let Pa denote the pairing operation,Smscalar multiplication inG1, PSmparallel

2 Theq-Bilinear Diffie-Hellman Inversion Problem (q-BDHI) is: given (Q,aQ,a2Q, ...,aqQ) ∈

G
q+1
1 , compute ˆe(Q,Q)a−1

∈G2.
3 The Computational Diffie-Hellman Problem (CDH) is: givenQ∈G1, aQ, bQ for somea,b∈

Z∗q, computeabQ∈G1.
4 We note that [10] uses multiplicative notation for the groups G1 andG2.
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scalar multiplication of the formaP+ bQ in G1, Ex exponentiation inG2, Mt p map-
to-point hashing, andInv inversion inZq. To make a fair comparison, the cost of each
operation will be related to that of an elliptic curve scalarmultiplication (M). Table 1
summarizes the benchmarking results using theMIRACLopen-source library [23], con-
sidering an order-q subgroup of a supersingular elliptic curveE overFp, wherep is a
512 bit prime andq is a 160 bit prime. Pairing values belong to a finite field of 1024
bits.

Table 1.Cost of basic operations in relation to that of an elliptic curve scalar multiplication.

Operation Notation Cost

Bilinear Pairing Pa 9M
Parallel Scalar Multiplication inG1 PSm 1.2M
Scalar Multiplication inG1 Sm 1M
Exponentiation inG2 Ex 1M
Map-To-Point Mt p 0.7M
Inversion inZq Inv 0.4M

If we assume that ˆe(P,P) is computed in advance and included among the public
parameters, then the encryption phase of AnTRE requires thefollowing operations: 1
PSmto computec1, 1 Smfor c2, 1 Ex for d, and 1Smto computeK. That is, no pairing
computations are necessary at execution time, and the totalcost of the encryption phase
is equivalent to 4.2M. In the decryption phase, the recipient must perform 1Paoperation
to calculate the point valued, and 1Smto produceK, thus the total decryption cost is
approximately 10M. Tables 2 and 3 summarize the comparisons of computational cost
for the cases ofunknownandknownreceivers, respectively.

Table 2. Computational cost comparison of BC-TRE, HYL-TRE, CLQ-TRE, and proposed
AnTRE protocol (sending tounknownreceivers).

Protocol Encryption Decryption Total

BC-TRE 3Pa+2Sm+1Mt p = 29.7M 1Pa+1Ex = 10M 39.7M
HYL-TRE 1Pa+1PSm+2Sm+1Mt p = 12.9M 2Pa+1Sm = 19M 31.9M
CLQ-TRE 2Pa+1PSm+1Ex = 20.2M 1Pa+1PSm+1Ex = 11.2M 31.4M
Proposed 1PSm+2Sm+1Ex = 4.2M 1Pa+1Ex = 10M 14.2M

Remarks:We note that neither BC-TRE nor HYL-TRE support pairing pre-computations,
because the sender must compute a pairing that depends on therelease time. Moreover,
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Table 3. Computational cost comparison of BC-TRE, HYL-TRE, CLQ-TRE, and proposed
AnTRE protocol (sending toknownreceivers).

Protocol Encryption Decryption Total

BC-TRE 1Pa+2Sm+1Mt p = 11.7M 1Pa+1Ex = 10M 21.7M
HYL-TRE 1Pa+1PSm+2Sm+1Mt p = 12.9M 2Pa+1Sm = 19M 31.9M
CLQ-TRE 1PSm+1Ex = 2.2M 1Pa+1PSm+1Ex = 11.2M 13.4M
Proposed 1PSm+2Sm+1Ex = 4.2M 1Pa+1Ex = 10M 14.2M

these two protocols require a special hash function,map-to-point, which is needed for
mapping strings onto cyclic groups, and which is much less efficient than plain hash
functions [30, 10, 23]. Furthermore, unlike BC-TRE and CLQ-TRE, AnTRE retains the
same efficiency whether or not the receivers areknownentities. It is also worth men-
tioning that BC-TRE and CLQ-TRE use a slightly different public key format, with
users’ public key consisting of two points inG1 instead of one (as in conventional cryp-
tographic schemes). This means that on the first use of any public key (for transmitting
to anunknownreceiver) the sender must verify the validity of this two-point public key,
to ensure that the recipient will be able to decrypt the message. Such verification is not
needed in our proposed protocol or in HYL-TRE5.

Transmitting to multiple receivers AnTRE is practical for encrypting a message to
multiple receivers with the same release-time (e.g., in an Internet programming con-
test). In our approach, the value ofd (in AnTRE.Dec) can be calculated by anyone who
knows the time-specific trapdoorsT . Also, the session key,K, depends ond, c2 (sent
in the clear), and the recipient’s private key,upr. Thus, if one wishes to use AnTRE
to send a message to multiple receivers, he is able to use the same random valuesr1

andr2 for all of them. In that case, the computed session keyK (and thusc3 as well)
will differ from receiver to receiver; the corresponding ciphertexts will be of the form
C < c1,c2,c3.1...c3.N,T >. Finally, becausec1, c2 andd are computed only once, the
total encryption cost per receiver will be3.2M

N +1M, whereN is the number of receivers.
Compared to CLQ-TRE [10] suitably modified for multiple receivers (it costs approx-
imately 2.2M for knownreceivers), our approach is more efficient, even in the special
case ofknownreceivers, if the number of designated recipients is greater than two. Al-
though BC-TRE and HYL-TRE can be modified for improved efficiency when sending
to multiple receivers, neither of them can avoid the pairingcomputation during the en-
cryption process (to the best of our knowledge), and thus they appear to be less efficient
compared to AnTRE and CLQ-TRE.

5 When comparing the cost of implementations of the above approaches, we did not include
the cost of a group membership test for the public keys. We note, however, that the schemes
[3, 10] use two points in their public keys (ours uses only one) and would thus require some
additional checking.
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4.2 Communication Cost

In order to compare the communication complexity of the fourTRE schemes, we must
take into account the bit-length of both the transmitted public keys and the ciphertext.
As we have mentioned in Section 4.1, in BC-TRE and CLQ-TRE theusers’ public keys
consist of two elliptic curve points, i.e.,upub∈G1×G1, while in the proposed AnTRE
and HYL-TRE protocolsupub∈G1. Consequently, if the recipient is anunknownentity,
the cost to download the recipient’s public key from a publicdatabase for BC-TRE and
CLQ-TRE is twice that of the proposed AnTRE and HYL-TRE schemes.

The ciphertext space (including transmission of time information) of each scheme
is:

– IND-CCA secure BC-TRE:6 CBC−TRE = G1×{0,1}n+k0+τ.
– HYL-TRE: CHY L−TRE = G1×G1×G2×{0,1}n+k0+τ.
– CLQ-TRE:CCLQ−TRE = G1×{0,1}n+k0+τ.
– Proposed AnTRE:CAnTRE= G1×G1×{0,1}n+k0+2k+τ.

BC-TRE and CLQ-TRE have a smaller ciphertext space than AnTRE (about 1 elliptic
curve point less), while the ciphertext space of HYL-TRE is the largest because of the
pairing value (e.g., 1024 bits) that must be transmitted.

4.3 Storage Requirements

In settings where TRE needs to be executed in low-end, limited-memory computing
systems (e.g., smartcards and other handheld computing devices), the memory/storage
requirements of the protocol(s) to be used must be taken intoaccount. As noted in
Section 4.1, the user’s public key space for AnTRE and HYL-TRE is a single elliptic
curve pointupub∈ G1, while for the other two protocols it consists of two points,i.e.,
upub∈G1×G1. As a result, BC-TRE and CLQ-TRE require twice the memory to store
the public keys forknownreceivers. Moreover, CLQ-TRE and AnTRE are the only two
of the protocols considered here that enable pre-computations at a minor cost of storing
ê(P,P) ∈G2, leading to increased efficiency7.

5 Conclusions

We have presented a new, server-based cryptographic schemefor anonymous timed-
release encryption, and proved that is IND-CCA and IND-CTCAsecure in the ran-
dom oracle model. Our protocol requires no interaction between users and the server,
whose sole responsibility is to publish time-specific trapdoors that correspond to spe-
cific time instants. We compared our approach with three of the best-known existing
TRE schemes; the main advantage of the proposed protocol is its low computational
cost and memory storage requirements. Other properties of the proposed scheme in-
clude scalability and practicality when sending a message to multiple receivers.

6 As the basic BC-TRE has not been proven to be secure against IND-CCA attacks, it could be
modified using the technique in [17].

7 We did not include here the memory cost during real-time execution (volatile memory) because
it depends on the implementation of the basic elliptic curveoperations.
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A Basic Version of the Protocol

A “basic” version of AnTRE, termed BasicAnTRE, will be useful when discussing
the security of our protocol (Appendix B). The ReleaseT and KeyGen algorithms of
BasicAnTRE are identical to those of AnTRE (Sec. 3.2). The Setup, Encryption and
Decryption primitives are as follows:

AnTRE.Setup: given security parametersk andk0, wherek0 is polynomial ink, the
setup algorithm:
1. Outputs ak-bit prime numberq, two groupsG1, G2 of orderq, an admissible bilinear
mape : G1×G1 7→G2 and an arbitrary generatorP∈G1.
2. Chooses the following cryptographic hash functions:H1 : {0,1}τ 7→Z∗q, H2 : {0,1}n 7→
{0,1}k0, H3 : G2 7→ Z∗q, H4 : G1 7→ {0,1}n+k0 for somen∈ N. These functions will be
treated as random oracles when it comes to security considerations.
3. Generates the time-server’s private keys

R
←−Z∗q and the corresponding public key

S= sP∈G∗1.
4. Chooses the message space to beM = {0,1}n and the ciphertext space isC =
G1×G1×{0,1}n+k0.
The public parameters areparams:= {k,k0,q,G1,G2,P,S, ê,H1,H2,H3,H4,n,M,C}.

AnTRE.Enc: to encryptm∈ {0,1}n using the time informationT ∈ {0,1}τ and the
receiver’s public keyB, the sender executes the following:
1. Choose randomr1, r2 ∈ Z∗q, computet = H1(T) ∈ Z∗q.
2. Computeh = H2(m).
3. Computec1 = r1S+ r1tP∈G∗1 andc2 = r2P∈G∗1.
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4. Computed = H3(ê(P,P)r1) ∈ Z∗q.
5. ComputeK = H4(dr2B) ∈ {0,1}n+k0 and thenc3 = (m||h)⊕K ∈ {0,1}n+k0.
The ciphertext isC := 〈c1,c2,c3,T〉.

AnTRE.Dec: givenC := 〈c1,c2,c3,T〉, the trapdoorsT and his private keyb, the recip-
ient computesd = H3(ê(c1,sT)) ∈G1 and the session keyK = H4(dr2B) ∈ {0,1}n+k0.
Then, he is able to retrieve the message asm||h = K⊕ c3. To verify the message, he
checks whetherH2(m) = h.

B Security Proofs for AnTRE

Our proofs are in the random oracle model, and follow those ofTheorems 2 and 3 of
[11] (an extended version of [10]). We will first consider thesecurity of BasicAnTRE,
described in Appendix A. As in [10], AnTRE results from a variant of the first Fujisaki-
Okamoto transform [17] applied to BasicAnTRE, by hashing the messagem, a random
numberx, and a timeT, and using the resulting bits in order to encrypt. This conver-
sion is slightly different from the one in [17] because the hash functionH2 takes as an
additional input the timeT. IncludingT among the inputs is necessary (the encryption
algorithm of BasicAnTRE is parameterized byT) and enables a knowledge extractor to
simulate the behavior of a decryption oracle with the same probability as the plaintext
extractor in the security proof of the Fujisaki-Okamoto conversion [17]. Our security
proofs apply the modified version of Theorem 3 from [17], established in [11].

B.1 Proof of Theorem 1 - security against “impatient” recipients

We first show that BasicAnTRE is secure against chosen time and plaintext attacks
(IND-CTPA)8 [10], using a slightly modified form of the security proof in [11, 10]
(similar to [4], [5]). Assuming an IND-CTPA attackerA which succeeds against Basi-
cAnTRE with non-negligible probability,ε(k), we will construct an algorithmB which
takes as inputs< P,αP,α2P, α3P, ...,αqP>, for some intergerq, and computes ˆe(P,P)α−1

with non-negligible probability.
Let qT be the number of queries made byA to the time server. Without loss of

generality, we will assume thatqT = qH1 − 1 = q− 1 (if qT < qH1 − 1, thenB can
issue dummy queries to the time-server broadcast oracle foritself). Initially, B chooses
ℓ

R
←−{1, ...,q} and a,b

R
←−Z∗q and setsIℓ = ab∈ Z∗p. Then, he choosesIi

R
←−Z∗q and

computeswi = Iℓ−Ii
a ∀ i ∈ {1, ...,q}\{ℓ}.

Next,B uses its input to compute a generatorQ∈G1 and a server public keyspub=
xQ for somex ∈ Z∗q, such thatB can know all of theqT pairs(Ii ,(Ii + x)−1Q), i 6= ℓ,
as in [4]. He does this in the following manner.B expands the polynomialf (z) =

∏q
i=0,i6=ℓ(z+wi) = ∑q−1

j=0 c jzj , to findc j ’s. Then,Q, U ∈G1 are obtained as

Q =
q−1

∏
j=0

(α j P)c j = f (α)P∈G1, U =
q

∏
j=1

(α j P)c j−1 = α f (α)P = αQ.

8 This type of adversary is defined similarly to IND-CTCA, but without access to a decryption
oracle.
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Similarly to [4], theqT pairs(wi ,Qi = (wi +α)−1Q) can then be obtained from expand-

ing fi(z) =
f (z)

z+wi
= ∑q−2

j=0 d jzj and computing

Qi =
q−2

∏
j=0

(α j P)d j = fi(α)P =
f (α)

a+wi
P = (α+wi)

−1Q, ∀ i ∈ {1, ...,q}\{ℓ}.

Now, B chooses the time-server’s public key to bespub = −aU− IℓQ = (−a)αQ−
abQ= −a(α + b)Q. Thus, the server’s private key (which is unknown toB), is x =
−a(α+b) =−aα− Iℓ ∈ Z∗q, and for alli ∈ {1, ...,q}\{ℓ}we have:

(Ii ,−a−1Qi) = (Ii ,(Ii−aα− Iℓ)
−1Q)

and
(Ii ,(Ii +x)−1Q) = (Ii ,(Ii−aα− Iℓ)

−1Q),

thus
(Ii ,−a−1Qi) = (Ii ,(Ii +x)−1Q).

B now has knowledge of allqT pairs (Ii ,(Ii + x)−1Q) because he can compute
Ii ,Q,Qi from (P,αP,α2P,α3P, ....αqP) as described above. Armed with this informa-
tion, he will be able to provide correctly formed values eachtime A queriesH1 for a
given time, or requests the trapdoor value for the same time.To proceed,B startsA on
inputspub = (−aU− IℓQ) and initializes a counter,v = 0. During the game we assume
that: i) all H1 queries are distinct, and ii)A produces her challenge request atT∗, for
which he asks the hash valueH1(T∗). B answers queries to random oracles as follows:

– H1: B answersIv and incrementsv = 1,2, ....
– For i = 2,3,4 (Hi): On inputγλ, λ = 1,2, ...,qHi , B selects a randomηi,λ and stores

(γλ,η2,λ) into a listLi . Each incoming query input is matched against those already
on the corresponding list; if the same query has been asked again, B returns the
same value as before.

– Queries to time-server: On inputTv,v = 1,2, ..., if v = ℓ, B stops and reports “fail-
ure”; otherwise returns the trapdoor value forTv,−a−1Qv = (In +x)Q, to A .

After the find stage,A outputs< m0,m1,T∗ > and a valid public keyupub to be
challenged on. IfT∗ 6= Tℓ (B did not guess correctly whichTi the attack will occur
on), thenB stops and reports “failure”. Otherwise, he selectsσ R

←−∈ Z∗q and a random
stringc3

∗ to return the challengeC∗ :< c1
∗, c2

∗, c3
∗>, with c1

∗ =−aσQ, c2
∗ = r2Q. To

elucidateB ’s choice ofc∗1, recall thatB should send something of the formc1
∗ = r1(t +

x)Q, c2
∗ = r2Q, with t = Iℓ (corresponding toH1(T∗)) andx = −aα− Iℓ (unknown

server’s private key). In the simulation set up byB , it would bec1
∗ = r1(Iℓ − aα−

Iℓ)Q = r1(−aα)Q, for r1 random. Now, assume thatr1 = σ
α , so thatσ = r1α. Then,

sendingc1
∗ = −aσQ to A , for randomσ, would be precisely the same as if we had

usedr1 = σ
α to encrypt. Realizing thatc3

∗ is not properly formatted, would require
A to queryH4(dβc2) with non-negligible probability (if not, one could construct an
algorithm for inverting theXORfunction with non-negligible probability). Whether or
not the private keyβ is known toA , it can be easily shown that computing the “correct”
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input toH4 (which isdβr2Q) with non-negligible probability, implies thatA must query
H3 on inputê(Q,Q)r1 with non-negligible probability to computed, the latter being the
output of a random oracle.B has the opportunity to detect that event and use ˆe(Q,Q)r1

to compute ˆe(Q,Q)a−1
.

If A is successful in guessing the hidden bit with non-negligible probability, then
using standard arguments it can be shown thatA is very likely to queryH3 on ê(Q,Q)r1

at some time of the game, if the latter mimics perfectly the real attack environment. To
produce its output,B selects a randomγ from itsL3 list, so that with probabilityε(k) 1

qH3
,

γ is ê(Q,Q)r1. Then,γ = ê(Q,Q)r1 = ê(P,P)
σ f 2(α)

α . If we let f 2(z) = ∑2q−2
j=0 φ jzj so that

f 2(α)/α = φ0/α+ ∑2q−2
j=1 φ jα j−1, then we can solve for ˆe(P,P)a−1

from γ, as:

ê(P,P)a−1
=

(

γσ−1
2q−2

∏
j=1

ê(P,P)(α
j−1)(−φ j )

)φ−1
0

,

where theφ j can be computed from the known coefficients off (z), and the ˆe(P,P), . . .,
ê(P,P)2q−3 are computed fromB ’s inputs< P,αP,α2P,α3P, ...,αqP>. This contradicts
the assumption that theq-BDHI problem is hard. We conclude that BasicAnTRE is
IND-CTPA secure. Now, the IND-CTPA security of BasicAnTRE implies IND-CTCA
security of AnTRE using a Lemma very similar to Lemma 2 of [11](itself derived from
Theorem 3 of [17]) with minor modifications. The proof (omitted here because of space
limitations) can be found in a fuller version of this paper [12].

Lemma 1. In the random oracle model, an IND-CTCA attackerA having non-negligible
advantageε against AnTRE when making qD decryption queries and qHi queries to or-
acles Hi ,(i = 1, ...,4), implies an IND-CTPA attackerB with non-negligible advantage
against BasicAnTRE.

We note that the proof [12] of the last lemma addresses the single-receiver case. If
a message is sent toN > 1 receivers, then the corresponding ciphertexts differ only
in their c3 parts, and a malicious receiver may attempt to read his message early by
obtaining multiplec3,i values,i = 1, ...,N, for the same messagem and timeT. Doing
so can be shown to be computationally difficult [12]. The complete argument is omitted
because of space limitations.

B.2 Proof of Theorem 2 - security against “curious” servers

We first show that BasicAnTRE is secure against chosen plaintext attacks (IND-CPA)9

[10]. Assume that there exists a polynomial-time IND-CPA attackerA which has a non-
negligible advantage,ε(k), against BasicAnTRE, askingni queries to random oracles
hi , i = 1, ...,4. We will show that there exists an algorithm,B , which solves the CDH
problem with non-negligible probability, in polynomial time, usingA as a subroutine.
The algorithmB will accept as inputsP, aPandbP, and will computeabP, for a,b∈Z∗q.

9 This type of adversary is defined similarly to IND-CCA, but without access to a decryption
oracle.
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Our scheme follows the proof of Theorem 3 in Cathalo et. al [10], whereB uses part
of the challenge ciphertext,c1,c2 to elicit A to make a random oracle query with the
desired input, in this case a known multiple ofabP.

B operates by assigning any valid key pair(s,S= sP), to the time server, and starts
A with inputsP, bP (public key against whichA is to be tested), and the server’s secret
key,s. B answersA ’s queries toH1,...,H4, as follows. For eachHi , i = 1, ...,4,B answers
each query at random; each time,B records the input and the reply it gave on a list,Li ,
so that if an oracle is queried again on the same input,B will return the same number.

After finishing its queries,A outputsm0,m1,T∗. At that point,B creates a challenge
ciphertext to return toA as follows. He choosesr1 at random and a messagem also at
random. He checks whetherH1 has previously been queried onT∗, in which case he
setst to its prior response, found in the listL1. If the opposite is true, thenB assignst to
be a random number, which he records inL1. B then setsc1 = r1S+ r1tP, andc2 = aP.
To producec3, B first checks whether the value ˆe(c1,(s+ t)−1P) = ê(P,P)r1 has been
presented byA as a query toH3. If so, B finds its previous reply from the listL3 and
setsd to that number, otherwise he setsd to a random number which it records onL3,
as specified previously. Finally,B choosesK at random, setsc3 = (m||H2(m))⊕K and
then sends the challenge(c1,c2,c3,T∗) to A .

FromA ’s point of view, the challenge appears to be properly formated. To recognize
that c3 is not an encryption of eitherm0 or m1, A would have to requestH4(dbc2),
for d = H3(ê(c1,sT)), known toB ; doing so would enableB to obtain the solution
to the CDH problem by computingd−1dbc2 = abP. On the other hand, because the
simulation set up byB mimics a genuine attack environment perfectly, one can show
using standard arguments that ifA succeeds in guessing the hidden bitb, it is very likely
to query oracleH4 on inputdr2bP (e.g., if that were not the case,A could be used to
produce an algorithm that inverts theXORoperation with non-negligible probability),
and in particular, the probability ofA doing so is someε′(k), non-negligible. In that
case,B has the chance to detectA ’s query and compute the CDH solution. Thus, when
A halts,B ignores her result, and selects at random an entry from his list L4. For the
number,g, that was his reply to the corresponding query, he computes and outputs
d−1g, having correctly guessed at the value ofabPwith probabilityε′(k)/n4, wheren4

is a polynomial bound on the number ofH4 queries made byA during her attack. This
contradicts the assumed hardness of the CDH problem. We conclude that BasicAnTRE
is IND-CPA secure.

The IND-CCA security of AnTRE follows from the IND-CPA security of Basi-
cAnTRE, via a result whose proof is very similar to that of Lemma 1 and is omitted.

Lemma 2. In the random oracle model, an IND-CCA attackerA having non-negligible
advantageε against AnTRE when making qD decryption queries and qHi queries to
oracles Hi ,(i = 1..4), implies an IND-CPA attackerB with non-negligible advantage
against BasicAnTRE.

As in the case of Lemma 1, the proof of Lemma 2 must account for the fact that if
a message is sent toN > 1 receivers, then a malicious server might then have access
to multiple c3,i values,i = 1, ...,N, for the same messagem and timeT, from which
he could attempt to read the message. An argument for why thisis computationally
difficult is given in [12].
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