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Abstract

There are nowdays various e-business applications, such as sealed-bid auctions
and electronic voting, that require time-delayed decryption of encrypted data.
The literature offers at least three main categories of protocols that provide such
timed-release encryption (TRE). They rely either on forcing the recipient of a
message to solve a time-consuming, non-paralellizable problem before being able
to decrypt, or on the use of a trusted entity responsible for providing a piece of
information which is necessary for decryption. This article reviews the mathemat-
ical background required for implementing TRE methods, including factorization,
quadratic residues and the bilinear Diffie-Hellman problems, along with a sample
protocol for each of the approaches studied here.

Part 1. Introduction

The essence of timed-release encryption (proposed by May in [15]) is to encrypt
a message so that no one, including the designated recipient(s), will be able to de-
crypt it before a specified time instant. Various TRE solutions have been proposed
in the literature. As a first cut,[15] descibed a basic mechanism in which a third
party has the role of an escrow agent, storing the encrypted messages and trans-
mit them to the recipient on the specified by the sender time instant. Since then,
a number of new innovative mechanisms appeared, each with its own advanages
and disadvantages. In 1996, [18] suggested the method of Time Lock Puzzles
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(TLPs), which was based on a non-parallelizable problem that could be easily
constructed, but required a minimum amount of time to solve. The same paper,
also described how any assymetric encryption scheme could be easily modified to
support TRE: A third entity, called a Key Generation Center(KGC), produces a
key pair for each required time instant and publishes the public part of these keys
right away, so that encryption is possible. Then, the KGC broadcasts each private
(decryption) key at the correpsonding time instant. The above techniques were
improved later in [14, 5]. Although additional aprroaches were also proposed [8],
the breakthrough in the field of TRE came after the introduction of identity based
encryption [3]. Beggining in 2003, [16], various protocols were proposed, based
on the quadratic residue assumption, and on the properties of bilinear pairings on
elliptic curve groups. The goal of this paper is to review the basic techniques
used for TRE together with a representative protocol for each approach, and entry
points into the relevant literature.

Part 2. Time-Lock Puzzles

All existing CPU-based TLP approaches are based on the same problem: Given a
large composite number, n, and integers ¢ < n and a with gcd(a,n) = 1, compute
the secret value (akin to a decryption key)

t

S =a” (mod n). (1)

It is known that, without factoring n, S can be computed in ¢ squarings modulo n
[14]. We remark that S can be easily computed by the sender, as she constructs n,
and thus knows ¢ (n) (Euler’s phi function of n), while it has been proven that this
problem cannot be parallelized.

The following is a sample TLP-based protocol from [18]. We assume that we
have a sender who wants to encrypt a message M via a time-lock puzzle, to be
decrypted in at least 7" seconds. The steps that he is going to execute are:

1. generate a large composite number, n = pgq, where p and ¢ are randomly
chosen secret primes.

2. compute ¢(n) = (p—1)(g—1).

3. compute t = T'S, where S is the number of squarings modulo » per second
that can be performed by the receiver.

4. generate a random key K for a conventional cryptosystem, such as AES.

5. encrypt M with key K and encryption algorithm AES to obtain the cipher-
text Cyy = AES(K,M).



6. choose a random a modulo n (with 1 < a < n) and encrypt K as Cx = K +
azr(mod n) - in order to increase the efficiency, one can initially compute
e=2'(mod ¢(n)) and b =a’(mod n).

7. produce as output the time-lock puzzle (n,a,t,Cg,Cy), and erase any other
variables (such as p, g) created during this computation.

The only way for the receiver to decrypt the message is to start with a and perform
t squarings sequentially (each time squaring the previous result).

As we saw above, the TLP approach puts immense computational overhead on
the receiver, who must perform non-stop non-parallelizable computation in order
to retrieve a time-encrypted message. This could be impractical (e.g., it would tie
up the received’s CPU) if the message is to be read sufficiently far into the future.
Moreover, the total time needed to solve a puzzle depends on the receiver’s CPU
speed and on the time at which the decryption process is started, making it difficult
to accurately predict exactly when the message will be “released”. Existing TLP
approaches include [18], [14], and the timed-release scheme for standard digital
signatures in [10].

Part 3. Passive-Server TRE based on Quadratic Residues

When [3] introduced the idea of identity-based encryption(IBE), they refered to
TRE as one of its possible applications. [16] implemented at idea, but did so us-
ing a different mechanism than that of [3]. In fact, at that time, there were two
possible solutions for constructing IBE schemes, one based on bilinear pairings
and another one based on quadratic residues [7]. In [16], the authors chose the
second approach creating the first server-passive TRE scheme. In their protocol
the sender does not communicate with the KGC (or time-server) at all. Thus, the
KGC:s sole responsibility is to periodically publish a piece of time-embedded in-
formation, also called a ‘trapdoor’, that is required for the decryption of messages.
Each trapdoor corresponds to a unique time instant and is to be used by any and
all users that want to decrypt a message at that time. The details are described
next.

The QR-TRE approach
There are three entities involved in the scheme of [16], a sender (S), a receiver (R)
and the KGC.



OR-TRE Initialization (run by the KGC)

1. Choose two different prime numbers p and ¢ that are both congruent to
3 mod 4, so p = 3%4 and g = 3%4.

2. Compute the public modulus as N = pgq.

3. p.q are kept secret and N is published.

OR-TRE Public IBE Key Construction (run by anyone)

This algorithm is used to create the IBE public key that corresponds to the time
information and works as follows: A hash function that maps a string on an inte-
ger mod N value applied to the string representing the decryption time. The only
restriction is that for the hash value, say A, the Jacobi symbol (]%) is +1. For in-
stance, if the disclosure time is to be on January, 1% 2009, at 12:00 noon (GMT),
the hash output is & = hash(GMT200901011200).

OR-TRE Trapdoor Generator (run by the KGC)

1. Compute & = hash(GMT200901011200) using the QR-TRE Public IBE
Key Construction algorithm.

2. Compute the trapdoor t = sqrt(h) mod N. Only the KGC can compute this

value, by calculating 1 = h¥2-2*9) 104 N. Such a r will indeed satisfy

either 1> = h mod N or t* = —h mod N, depending upon which of ¢ or —¢ is

a square modulo N.

3. Publish ¢ at decryption time.

OR-TRE Encryption (run by sender)
Suppose that the sender has knowledge of the public value N, and selects a time-
instant, say GMT200901011200, to send a single bit, m, to the receiver.

1. Letr=2m—1,thusr=—1ifm=0andr=1ifm=1.

2. Choose a random, k € 0...N — 1, such that the Jacobi symbol (1%) =r.

3. Compute h = hash(GMT200901011200) using the QR-TRE Public IBE
Key Construction algorithm.

4. Compute s = (k+ h/k) mod N and send it to the receiver.

OR-TRE Decryption (run by receiver)
The receiver knows the public value N and he has the encrypted message s.

1. At the appointed time he obtains the trapdoor ¢ from the KGC.
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2. Computes m =Jacobi symbol (57\,2’ )

3. msg= (m+1)/2,i.e, msg =0 if m = —1, otherwhise msg = 1.

Part 4. Modern TRE schemes based on Bilinear Pairings

Since the early work on TA-based TRE schemes, there have been many efforts
in order to minimize server-user interaction, as well as to ensure scalability and
user-anonymity. After the introduction of IBE several new and innovative TRE
techniques appeared in the literature [1, 4, 9, 6, 17],making use of elliptic curve
cryptography (ECC) and the efficient implementation of bilinear pairings on ECs.

All modern pairing-based TRE schemes require an abelian, additive finite
group Gy, of prime order ¢, and an abelian multiplicative cyclic group of the
same order, G,. We will let P denote the generator of Gi; H,, will be a secure
hash function. Finally, ¢: G| x G| — G will be a bilinear pairing.

Definition 1 (Bilinear Pairings): Suppose G is an additive cyclic group generated
by P, whose order is a prime ¢, and G, is a multiplicative cyclic group of the
same order. A map ¢ : G| x G| — G, is called a bilinear mapping if it satisfies
the following properties:

1. Bilinear: e(aP,bQ) = e(abP,Q) = e(P,abQ) = ¢(P,Q)* for all P,Q € G,
and a,b € Z,

2. Non-degenerate: there exists P,Q € G| such that é(P,Q) # G,

3. Efficient: there exists an efficient algorithm to compute the bilinear map

For our purposes, G| will be the group of points on an elliptic curve, and G, will
be a multiplicative subgroup over a finite field. Currently, the Weil, Tate, Ate and
Nr pairings can be used to construct an admissible bilinear pairing. Their imple-
mentation can be found in [13].

Definition 2 (Discrete Logarithm Problem (DLP) ): Given Q,R € G find an inte-
ger a € Zy such that R = aQ.

Definition 3 (Decisional Diffie-Hellman Problem (DDHP) ). Given Q € G, , aQ,
bQ and cQ for some unknowns a,b,c € Z; tell whether ¢ = ab(mod g).

Definition 4 (Computational Diffie-Hellman Problem (CDHP) ): Given Q € G ,
aQ, bQ for some unknowns a,b € Z} , compute abQ.



Definition 5 (Bilinear Diffie-Hellman Problem (BDHP) ): Given Q € G, , aQ, bQ
and cQ for some unknowns a,b,c € Z: , compute é(Q, Q).

A Modern Pairing-Based TRE Scheme

To illustrate how a Pairing-Based TRE scheme works, we review the protocol
proposed by [11] choosen mainly because of its simplicity. Most, if not all anony-
mous TRE schemes with pre-open capability are defined by a set of polynomial-
time algorithms similar to that described below.

We will denote time by 7 € 0,17, T € N where ¢ indicates the 7-bit string rep-
resentation of a specific time instant. To send a message, m, that will be decrypted
at time ¢, the following protocol is to be executed:

TRE.Setup(run by the time-server) Given a security parameter &,

1. Output a k-bit prime number ¢, two groups G, G, of order ¢, an admissible
bilinear map e : G| x G| — G, and an arbitrary generator P € G.

2. Choose the following cryptographic hash functions: Hj : {0,1}* — GJ, H, :
G5 —{0,1}". T .

3. Generate the time-server’s private key s € «—Z; and the corresponding public
key S = sP € GJ.

4. Choose the message space to be m = {0, 1}" and the ciphertext space to be
C =Gy x{0,1}"7,

The public parameters are params := {k, q, Gy, G, P, S, é, H, Hy, n, T, m, C}.

TRE.ReleaseT (run by the time-server) Given a time instant 7 € {0,1}% and the
server’s private key s € Z, it returns the time-specific trapdoor skr = sT € Gy,
where T = H(t) € G}. We note that the trapdoor is in fact a time-server’s short
signature (as this proposed in [2]) on ¢, and is inherently self-authenticating.
Thus, there is no need for an additional server signature: a user can simply check
whether é(S,T)=é(P, skr).

TRE.KeyGen (run by the receivers) Given params, choose a private key b € Z
and produce receiver’s public key B = bP € G7.

TRE.Enc (run by the senders) To encrypt m € {0,1}" using the time informa-
tion # € {0, 1}7, the receiver’s public key B and the server’s public key S,

1. Choose r € «—Z,.

2. Compute T = H,(t) € G}, and Q =T € GJ.
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3. Compute K = ¢é(S,0) = é(sP,rT) =é(P,T)"” € G3.
4. Compute ¢; =rB =rbP € G} and c; = m® Hy(K) € {0,1}", where & denotes
the XOR function. The ciphertext is C := (cy,¢2,1).

TRE.Dec (run by the receivers) Given C := (cy,c»,1), the trapdoor sk and his
private key b,

1. Compute R = b~'¢; = b~'brP = rP. R can also be pre-computed (before the
release time),

2. The session key is K = é(R,skr) = é(rP,sT) = é(P,T)" € GJ.

3. The message is m = H>(K) @ c;.

This protocol does not allow for pre-opening. If pre-opening is needed (a pro-
tocol which supports this function is described in [12]) then the sender must be
equipped with an additional algorithm, which can produce a “release key”. The
latter acts as a secondary trapdoor and permits the receiver to decrypt without
waiting (see [12] for additional discussion).

TRE.Genr; (run by the sender of a message m): Using a randomly-chosen se-
cret value v, generate and output the release key, ry.

Part 5. Conclusions

We have reviewed the three best-known approaches to TRE. Current challenges
in that area include the efficient implementation of the TRE schemes and their
practical use as a primitive in a number of real world applications that require
such a functionality, such as e-voting, e-lotteries and blind auctions.
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