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Abstract 

This work is aimed at exploring the interaction of com- 
munication and control in systems whose sensors and 
actuators  are distr ibuted across a shared network. Ex- 
amples of such systems include groups of autonomous 
vehicles, MEMS arrays and other network-controlled 
systems. We generalize recent results concerning the 
stabilization of LTI systems under limited communi- 
cation. We seek a stabilizing static output  feedback 
controller whose communication with the underlying 
plant follows a given periodic pat tern.  We present an 
algorithm tha t  allows us to pass to a t ime-invariant for- 
mulation of the problem and use simulated annealing 
to search for stabilizing feedback gains. 

1 Introduction 

Recent advances in communications and networking 
technologies are now enabling the construction of com- 
plex systems whose sensors, actuators  and computing 
elements are connected by means of a network. Exam- 
ples of such systems include groups of vehicles, satellite 
clusters, smar t  structures and MEMS arrays, to name 
a few. The performance of these distributed systems is 
often limited as much by the lack of t ime on a shared 
network of sensors and actuators  as it is by lack of 
computat ional  power. This fact has led to recent ef- 
forts towards bringing together aspects of control and 
communication,  under a framework that  will lead to a 
bet ter  understanding of control systems with commu- 
nication constraints [3, 8, 5, 7, 2]. 

One approach to analyzing the effects of communica- 
tion on the control of a distributed system, is to in- 
troduce a "communicat ion sequence" [3] which allows 
multiple (sub)systems to share the attention of a cen- 
tralized controller [5]. Communicat ion sequences quan- 
tify the amount  of "at tention" tha t  the decision-maker 
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pays to each component  of a control system. Previous 
work has addressed the problem of stabilizing a set of 
LTI systems when the controller can only communi-  
cate with one sub-system at a t ime [6]. In this paper  
we generalize those results by separat ing sensing and 
actuation events without the need for grouping states 
into sub-systems. In Sec. 4 we present a new "extensi- 
fication algorithm" which t ransforms the stabilization 
problem into an equivalent problem, involving a search 
for stable elements of a family of matrices [6]. 

2 A Prototype Computer-Controlled System 

Consider an n-dimensional LTI system with input 
u E IR m and output  y E IR p. The system is driven 
by a digital controller (Fig. 1) tha t  does not have 
simultaneous access to all inpu t s /ou tpu t s  of the 
control system. In particular: 
• The controller sends inputs to and receives measure- 
ments from the system every A units of time, via a 
zero-order-hold stage. 
• Inpu t s /ou tpu t s  are t ransmit ted  via a bus which has 
limited capacity. Specifically, the bus can "carry" at 
most b > 0 signals, with b < m + p ,  b E N*. 

The capacity of the communicat ion bus is to be 
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Figure 1: A closed-loop computer-controlled system 

split between input and output  signals, with br chan- 
nels used for sampling the output  of the underlying 
LTI system and bw channels used for t ransmit t ing  
control inputs. We will refer to these two groups 
of channels as the "input" and "output  bus." Of 
course, b,. and bw may change at any t ime as long 
as bT + bw = b. This represents a ra ther  general 
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setting for describing controller-plant communication, 
allowing for dynamic reconfiguration of the available 
channels. To simplify the discussion, we will take the 
number of input and output  channels to be constant, 
with bw < m and b~ < p. 

Consider the discretization of G(s) (with sampling pe- 
riod A) and let x ( k + l )  = Ax(k )+Bu(k ) ,  y(k) = Cx(k)  
be a state-space representation of the resulting discrete- 
time system. Each element of u retains its value (by 
virtue of the ZOH stage) until that  element is updated 
by the controller. At the same time, the controller 
may only receive partial information about the output  
y(k). One way of negotiating the constraints imposed 
by the bus, is to choose a sequence of operations for the 
switches (see Fig. 1) that  select which inputs /outputs  
are to be updated/sampled at a particular time. This 
is captured in the idea of a "communication sequence" 
(originally introduced in [3]): 

Def in i t ion  1 An N-per iod ic  c o m m u n i c a t i o n  se- 
quence  is an element of 

Ern × N p~t = { ( a ( 0 ) , a ( 1 ) , . . . , a ( N -  1), 

o'(0), ..., a ( N  - 1), . . .): a(i) E {0, 1} m} (1) 

for some m > O. 
Controller-plant communication follows a periodic pat- 
tern, specified by a pair of N-periodic sequences: a 

~mxN will be used to trans- "control" sequence aw E--per 
~ p × N  mit inputs and a "measurement" sequence ar E --per 

will provide a pat tern  for sampling the system output.  
The entries of aw(i) (at(i)) indicate which elements of 
u(k) (y(k))are to be updated (measured) at the k th 
time step. We will ignore quantization errors associ- 
ated with the representation of signal samples in the 
digital controller and with the transmission of those 
samples through the communication bus. 

Def in i t ion  2 Consider a computer-controlled system 
G(z) with bw < m (br < p) being the dimension of the 
input (output) communication bus. A pair o] commu- 
nication sequences c% E ]E ~×g,  a~ E E pxN is admis-  
sible if: 
• []cr~(i)[[ 2_<bw,[la~(i)[[ 2_<br V i = O , . . . , N - 1  
• Span{aw(O) , . . . ,O-w(N-  1)} = ~m and 

Span{a t (O) , . . . ,  ar (N - 1)} = 11~ p 
The above conditions require that  no more than bw (b~) 
of the system inputs (outputs) be updated (measured) 
by the controller at each step and that  the pair (a~, aT) 
allow communication with all inputs and outputs of the 
linear system at least once every period. 

3 Stab i l i za t ion  w i th  Limited  C o m m u n i c a t i o n  

We now focus on the problem of stabilizing a computer- 
controlled system with communication constraints, us- 
ing static output  feedback. 
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P r o b l e m  1 Given: a computer-controlled LTI  system 
G(z) with b~,bw E N* denoting the size o] the input 
and output communication busses and a pair of ad- 
missible N-periodic communication sequences o'~, 0% E 

p×N rn×]V 
Epe ~ ,Ep~ , find a constant output feedback gain 

F E R v×m that stabilizes the closed-loop system. 

In [6], we showed (by providing a so-called "extensifi- 
cation algorithm") that a version of this problem was 
equivalent to the NP-hard problem: 

P r o b l e m  2 Given a collection of matrices Ai E 
l[~q×q,o < i < imax, and scalars 71, ...,7i . . . .  E ~ ,  find 
a stable element of the aJfine subspace 

~ma~ 

A = .a0 + (2) 
i = l  

In the next section we present a new, more gen- 
eral algorithm which considers actuation and measure- 
ment events separately, requires no a-priori grouping of 
states into "sub-systems" and arrives at a similar con- 
struction for the matrices that  span the affine subspace 
of interest, with q = (2N 2 - N ) n  and i m a  x = mp in 
the statement of Problem 2. 

4 E x t e n s i v e  F o r m  o f  a D i s c r e t e  L T I  S y s t e m  

Consider the (discretized) system of Fig. 1, to which 
a static output  feedback controller is attached, subject 
to limited communication as described in Sec. 2. 

4.1 Constra ined  M e a s u r e m e n t s  
Assume for now that  b~, = m so that  the controller 
can transmit an entire input vector at once to the LTI 
system. Only some of the elements of y(k) are received 
by the controller at each step (as dictated by a t  E 
~p×N,~ with all remaining elements holding their last- per ] 
known values. More precisely, 

u(k) = (3) 

where Yl (k) is the output  vector composed of the most 
up-to-date measurements available to the controller at 
the k th step. Typically, we expect that yl(k) ~ y(k). 
We write: 

(4) 
where for a vector x E ~n,  diag(x) is an rt x n ma- 
trix with the elements of x along its diagonal, all other 
entries being zero. By iteratively applying Eq. 4 for a 
number of steps equal to the communication period N,  
we obtain: 

N - 1  

Yl(k) = E D R ( k , i ) C x ( k  - i )  (5) 
i = 0  



where 

zx ~ diag(a~(k)) i = 0 
Dn(k,i) = t diag(a~(k - -  i ) )  i - - 1  [Ii=oMn(k,J) i > 0 

(6) 
Mn(k,j) ~ I -d iag(a~(k  - j ) )  (7) 

Note that  DR(k,i) are diagonal p x p matrices. The 
jth diagonal element of DR(k,i) is 1 if the jth output  
was last read at the (k - i) th step and is 0 otherwise. 
We observe that  if the communication sequence a~ is 
admissible then each of the p elements of the output  
y(k) will be read at least once every N steps so that 
the summation in Eq. 5 terminates after at most N 
terms• 

4.2 Constrained Control  
We now consider controller-plant communication over 
the input bus. At the k th step, only the inputs specified 
by the non-zero entries of aw(k) are updated, with all 
other inputs retaining their previous values: 

u(k) = diag(aw(k)ryl(k) + (I-diag(aw(k)) ) u ( k -  1) 

(8) 
By iterating backwards for a full period (N steps) and 
assuming that  the communication sequence aw is ad- 
missible, we obtain: 

N - - 1  

u(k) = E Dw(k,i)ryl(k - i) (9) 
i = 0  

where Dw (and Mw) are obtained from Eq. 6, 7 simply 
by replacing a~ with 0%. In this case Dw(k,i) is an 
m x m diagonal matrix. 

4.3 Combining  Communicat ion  Constraints 
Substituting Eq. 5 into Eq. 9, we obtain: 

2N- -2  

Bu(k) = Fk x(k - i) 
i = 0  

where 

(10) 

L.~-J ( i -N- l )  
Dw(k , j ) rDR(k - j , i - j )C  (11) 

j = m i n ( i , N - - 1 )  

It follows that  the closed-loop dynamics of the 
computer-controlled system are given by: 

2N- -2  

x(k + l) = A x ( k ) +  E Fkix(k-  i) (12) 
i=0  

Define Comp(p) to be the companion form associated 
with an nta-degree polynomial p(s) = ~ p~si: 

0 1 0 . . .  0 
0 0 1 . . .  0 

' .  0 

0 . . . . . .  0 1 

Pn Pn-1 " " " Pl PO 

(13) Corny(p) 

If we now use the F k j  (Eq. 11) to define the matr ix 
polynomials 

2 N - 2  

fk(s) = A + E Fkjs' (14) 
i = 0  

then the closed-loop dynamics of Eq. 12 can be ex- 
pressed in first-order form: 

x(k + 1) = Cornp(fk)x(k) (15) 

T where X . . . .  [X(k-2g+3) x~) X(k+i)]T T G R (2N-1)n. 

The (linear) system of Eq. 15 is N-periodic in k, and 
describes the state evolution of the original computer- 
controlled system under output  feedback and periodic 
communication. We have essentially "extensified" the 
state vector to include past values up to two commu- 
nication periods. 

It is a fact that  every discrete-time periodic system 
can be expressed as a time-invariant system of higher 
dimension [4]. Applied to Eq. 15, this fact yields a sys- 
tem of order (2N 2 - N ) n  which we call the " e x t e n s i v e  
fo rm "  of the original system of Problem 1: 

X~(k + 1) = AXe(k) (16) 

where Xe(k) E R (2N2-N)n and 

A = 

0 • . . 0 O C ° m P ( f O )  7 
C o m P ( f l  ) 0 • ' • 0 0 

0 C o m p ( f 2  ) O . . • 0 

• • . . .  0 

0 ' • . 0 C o m p ( f N _ l )  0 

(17) 

By construction, stability of the extensified system 
(Eq. 16) is equivalent to the stability of the original 
system. Moreover, each of the matrices Comp(fk) are 
affine in the entries of F. By choosing a basis for Nmxp, 
we can express F as F = ~=Po ~iEi where Ei is an m x p  
matrix whose ([~AJ + 1, (i - 1) rood p + 1) th entry is 
"1", with all other entries being zero. In the basis of 
the {Ei} we can write A as an element of the a n n e  
subspace 

r n p  

A = ,,4o + E 7~Ai (18) 
i = 0  

where each of the Ai are obtained by substituting Ei 
for F in Eq. 11. 

In summary, we have given a procedure for converting 
an output  feedback stabilization problem involving LTI 
systems under limited communication, into a search 
problem involving a finite collection of (2N 2 - N)n- 
dimensional matrices. These matrices are obtained 
from the parameters of the original LTI system together 
with a pair of admissible communication sequences. 
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5 A n  Extens i f i ca t ion  Example  

Consider the scalar system 

x(k  + 1) = ax(k)  + u(k); y(k)  = x(k)  (19) 

We assume that  the controller communicates with the 
above system over a bus of width b = 1 according to the 
following pair of 2-periodic communication sequences: 

ar = ( 1 , 0 , 1 , 0 , . . - ) ,  -w = ( 0 , 1 , 0 , 1 , . . . )  (20) 

so that  the communication channel is used both for 
measuring the output  and for transmitt ing the control, 
in an alternating fashion. Clearly, the above sequences 
are admissible. We want to stabilize the system using 
a control law of the form 

u(k) = 3,y(k - d(or,  k)) (21) 

where d(ar, aw, k) is a delay that  depends on the com- 
munication sequences and the current step k. 

Following the procedure outlined in Sec.4, we ob- 
tain a 3-dimensional periodic system x (k  + 1) = 
C o m p ( f k ) x ( k )  with 

a + 3 , s  2 k e v e n  (22) 
f k ( s )  = a + 3,s k odd 

The corresponding companion forms are: 

Comp( f k )  { 0 1 0 
0 0 1 

3' 0 a 
0 1 0 
0 0 1 

0 3  ̀ a 

e v e n  

(23) 

k odd 

and the extensive form is given by the 6-dimensional 
LTI system: 

X¢(k + 1) = 

0 1 0 
0 0 0 1 

3, 0 a 
0 1 0 
0 0 1 0 
0 3' a 

X~(k) (24) 

which is to be made stable by choice of 3 .̀ The coef- 
ficients matrices Ao and .,41 (Eq. 18) can now be read 
off from Eq. 24. 

6 F ind ing  a Set  of  Stabi l iz ing  Gains 

It has been shown that  a version of Problem 2 is NP- 
hard [1] thus in general, one cannot hope to obtain an 
analytic solution for the stabilizing gains 3,~. One pos- 
sibility is to pose an optimization problem by asking 
that  the eigenvalues of A = Ao + ~ i  3,iAi be enclosed 

in a circle with the smallest possible radius. This sug- 
gests minimizing the spectral radius of the closed-loop 
system 

p = II,tm<,x(.A)ll (25) 

where )~maz(,A) denotes the largest-magnitude eigen- 
value of .A. To negotiate the large number of local 
minima that  are expected, we applied simulated an- 
nealing on the gains 3,i. Our algorithm numerically 
computes the gradient Op103,i and then lets the 3,i flow 
along that  gradient, adding a white-noise term dw with 
a gain g(t) that  decays to zero: 

d3,i = ~ d t  + g(t)dw. (26) 

The "cooling schedule" g(t) should go to zero as t --~ co, 
but it should do so at a slow enough rate for the spectral 
radius to approach the global minimum. 

7 S imula t ion  R esu l t s  

Consider the fourth-order, two-input, two-output  LTI 
system: 

[ ,  3,41,2 [oo] 
(k  1) , i4 3 l i3 - l i 3  X "-t- ..i. l i e  o - l /<> - a / T  X -4- ~ o ?j 

0 - 1  2 / 5  0 0 1 

(k) [1  o o , ]  (k) (27) Y = 0 1 0 0 x 

The open-loop system has a spectral radius of 
llXm~xll = 3.2 which is also the spectral radius of the 
extensive form, for 3,~ = 0, i = 1 , . . . , 4 .  We want to 
stabilize this LTI system using static output  feedback, 
given that  the communication bus can carry two sig- 
nals to / f rom any of the inputs or outputs  (i.e. b = 2). 
In the following, we investigate the performance of the 
simulated annealing algorithm for two different com- 
munication patterns. 

7.1 Contro l  us ing N o n - u n i f o r m  A t t e n t i o n  
We selected a period-four pair of communication se- 
quences, 

([11 [1] [,] [01 aw = a t  = 0 ' 0 ' 0 ' 1 " "  

that  devote three cycles to the pair (u l , y l )  for every 
one cycle allocated to (u2,y2). The above sequences 
were chosen after some experimentation and by notic- 
ing that  the upper-left 2 × 2 block of the dynamics for 
the state evolution (Eq. 27) has a larger spectral radius 
than the lower-right block (when the coupling between 
the two blocks is removed). As a result, communicat- 
ing more often with the (ul, Yl) pair may lead to bet ter  
performance. 

The matrices composing the extensive form were com- 
puted and simulated annealing was performed on the 
four elements of the feedback matr ix F. The simu- 
lated annealing algorithm was stopped after 5000 steps 
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(approximately 15 minutes on a 500MHz PC). The 
cooling schedule was given by 

3O 
g(i) = log ((1 + i))(o.s+i/s000) i = 1 , . . . ,  4800 

(29) 
i.e. logarithmic decay to a level of 0.11, followed by a 
linear decay to zero in an additional 200 steps. Equa- 
tion 29 and its parameters were chosen after some 
numerical experimentation. Choosing "good" cooling 
schedules for the stabilization problem considered here 
remains an open problem. Simulated annealing sta- 
bilized the closed-loop system, reducing the spectral 
radius to 0.795. The final closed-loop eigenvalues are 
shown in Fig. 2. with the evolution of the spectral 

0.5 

_e 0 

-0.5 0 0.5 
Re 

Figure  2: Closed-loop eigenvalues with non-uniform at- 
tention, Area, = 0.795. 

radius of the system shown in Fig. 3. 
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Figure 3: Cooling schedule and evolution of spectral ra- 
dius (non-uniform attention). 

7.2 Contro l  w i t h  Un i form A t t e n t i o n  
Next, we chose communication sequences correspond- 
ing to "uniform attention" 

1 = = ( [ 0 ]  [ 0  1 , ] [ 0 ] [  0 (30) aw ar 1 j " " /  

with the same cooling schedule as in the in the non- 
uniform attention case. This time, simulated annealing 
did not lead to stabilizing gains, even after repeated tri- 
als with slower-decaying cooling schedules. The spec- 
tral radius of the closed-loop system reached a mini- 
mum level of 2.7. 2 3 4 6  

8 Conc lus ions  and Future  Work 

We discussed the stabilization of LTI systems which op- 
erate under limited communication. Our approach is 
based on the use of periodic communication sequences 
which direct the flow of control and measurement sig- 
nals between controller and plant. It is expected (and 
verified in numerical experiments) that  some communi- 
cation sequences allow more effective control than oth- 
ers. We gave a general "extensification" algorithm for 
converting the stabilization problem to a time-invariant 
form and proposed an optimization method for finding 
stabilizing feedback gains. 

There are several issues which require further study, 
including methods for finding "good" communication 
sequences, cooling schedules and stopping criteria for 
simulated annealing. It would be interesting to de- 
velop models which provide for more general (perhaps 
interrupt-based) communication protocols. The design 
of state observers with limited communication seems to  
be of importance, especially in light of the NP-hardness 
result regarding the stabilization problem. 
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