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The Dynamics of a Forced Sphere-Plate Mechanical
System

Dimitrios Hristu-Varsakelis, Member, IEEE

Abstract—We study the dynamics and explore the controlla-
bility of a family of sphere-plate mechanical systems. These are
nonholonomic systems with a five-dimensional (5–D) configuration
space and three independent velocities. They consist of a sphere
rolling in contact with two horizontal plates. Kinematic models of
sphere-plate systems have played an important role in the control
systems literature addressing the kinematics of rolling bodies,
as well as in discussions of nonholonomic systems. However,
kinematic analysis falls short of allowing one to understand the
dynamic behavior of such systems. In this work, we formulate and
study a dynamic model for a class of sphere-plate systems in order
to answer the question: “is it possible to impart a net angular
momentum to a sphere which rolls without slipping between
two plates, given that the position of the top plate is subject to
exogenous forces?”

I. INTRODUCTION

I N his influential book on analytical dynamics, Whittaker
[21] brought together many of the significant results in clas-

sical mechanics, up to that time. He included a rich collection
of problems in rigid body dynamics, some involving nonholo-
nomic systems and rolling motion. More recently, with appli-
cations of mathematics branching out to the areas of robotics
and object manipulation, such systems have come to the fore yet
again, this time with emphasis on control theory. In this work,
we make a detailed study of what is perhaps one of the sim-
plest nonholonomic mechanical systems, called the sphere-plate
system. The system under consideration consists of a sphere
rolling between two horizontal plates. The bottom plate is re-
garded as being fixed, while the top plate is movable in the hor-
izontal plane (see Fig. 1). Our purpose is twofold. We want to
first formulate a dynamic model for a family of sphere-plate sys-
tems and then to use that model in the context of control theory,
in order to explore the controllability properties of these sys-
tems.

It is intuitively known, and can be proven mathematically, that
a sphere can be arbitrarily repositioned and reoriented on a plane
by rolling (see, for example, [15]). In this paper, we investigate
the problem of spinning-up the sphere by moving the top plate.
By the term “spin” we understand the rotational velocity of the
sphere about the vertical axis through its center. The dynamic
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model will allow us to define a “zero-translational-velocity sub-
manifold” as the set of system states that correspond to a spin-
ning sphere with the top plate being stationary. This idea will be
formalized in Section II-C. What we find is that a fundamental
relationship exists between the inertial symmetry of the sphere
and the problem of achieving a desired spin. In that respect, the
class of sphere-plate systems considered in this work exhibit the
same critical reliance on inertial asymmetry and nonholonomic
effects as the recently popular “rattleback top” (see [22], [10],
and [13]). Specifically, we show that the only spheres to which
one can impart a steady spin are those whose geometric centers
and centers of mass do not coincide. Although we focus on a
specific nonholonomic system, the study of such questions can
contribute toward understanding more general spinup problems
[6].

The kinematics of sphere-plate systems are a prototype for
more general nonholonomic systems and as such they have been
used to demonstrate key ideas in nonlinear control. In [4], [7],
optimal control problems were formulated for a simplified kine-
matic model, sometimes referred to as the “nonholonomic inte-
grator” (see Appendix). More recently, [5] used the same model
to illustrate new ideas in pattern generation and approximate in-
version. Kinematic models for sphere-plate systems have also
received attention in previous works on the control problem of
repositioning and reorienting rigid bodies under rolling con-
straint (see [15], [2], [8], and others). The ideas of reachability
and Lie algebras play a natural role in that setting. In [17], [15],
and others, algorithms were presented for deciding the exis-
tence of admissible paths between contact configurations of two
rolling bodies and for finding such paths. Those algorithms were
in turn applied in the areas of robotics and multi-fingered ma-
nipulation (see [14], [18], [16], [9], and others).

To advance our understanding of sphere-plate systems be-
yond what is afforded by kinematics, we will draw on [21]
which discusses a general approach to the equations of motion
for nonholonomic systems (originally due to Hamel), as well as
a number of interesting examples relevant to this work. Our ap-
proach is consistent with nonholonomic mechanics where the
equations of motion are extrema of some energy functional,
allowing arbitrary variations on the coordinates and using La-
grange multipliers to effect the constraints. This is in contrast to
the vakonomic approach [1], where the energy function is first
restricted to a submanifold defined by the constraints and vari-
ations are allowed only on that submanifold.

In engineering, one often wants to consider the mechanical
system not just from the point of view of analytical mechanics
but also from the point of view of control systems. In analyt-
ical mechanics the equations of motion for a dynamical system
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Fig. 1. A sphere-plate system.

are obtained with emphasis ondescribingthe behavior of the
mechanical system. In the control systems approach one seeks
instead to identify exogenous input signals, obtain input/output
formulations andprescribedesired system responses [3]. Both
of these points of view are relevant to the goals of this work and
will be used as appropriate in our discussion.

In Section II, we derive the equations of motion for a class
of sphere-plate systems. We show that asymmetry plays a crit-
ical role with respect to the controllability and existence of inte-
gral invariants for the sphere-plate system, viewed as a control
system. By the term “integral invariant” we understand a func-
tion that depends only on the state of the control system and
has constant value along trajectories regardless of the choice
of control inputs. In Section III, we present simulation results
that demonstrate some control strategies for achieving spin. The
choice of control inputs that produced spin was guided by phys-
ical intuition about the mechanical system. It would be desirable
to compute inputs that achieved a desired spin, and also satisfied
some type of optimality condition, such as minimum energy or
minimum time, to achieve that spin. That problem remains open.

II. A CLASS OFASYMMETRIC SPHERE-PLATE SYSTEMS

Consider a sphere of unit radius (Fig. 2) that rolls without
slipping between two plates, both plates being horizontal with
respect to some spacefixed inertial frame. It is assumed that
both sphere-plate contacts (top and bottom) are maintained at all
times. The bottom plate is fixed while the top plate is allowed to
move horizontally, acted on by external forces. We will ignore
gravity.

The five-dimensional (5-D) configuration space for the
sphere-plate system is . The phase space is
three-dimensional (3-D) due to the rank-2 rolling constraint
that is imposed. We choose coordinates on the spaceas
follows. Let be a bodyfixed inertial frame whose origin is
fixed at the center of the sphere. The matrix will
describe the orientation of the sphere. The columns ofare
the spacefixed coordinates of the unit vectors of. The vector

specifies the horizontal position of the

Fig. 2. A class of sphere-plate systems.

center of the sphere. Unless otherwise noted, quantities will
be expressed in a spacefixed coordinate frame whose-axis is
normal to the plates. We will take the pair of external forces

to be the exogenous inputs acting horizontally on the
top plate.

In the bodyfixed frame , the sphere’s center of mass has
coordinates , with . The mass of the sphere is

. The rotational inertia measured about any axis through
the center of mass is with . The mass of the top plate
is . Under these assumptions, the rotational inertia of
the sphere, expressed in any frame located at the center of mass,
is given by the matrix . We take to be the th
standard basis vector in and define the quantities

(1)

which represent the (spacefixed) vectors from the top and
bottom contacts respectively to the sphere’s center of mass.
In the following, numerical subscripts will be used to indicate
elements of vectors, unless otherwise noted. For example,

.
Armed with the above definitions, we will first obtain the

equations of motion for the sphere-plate system assuming the
mass of the top plate is . We will subsequently augment
our model to include the inertial effects of the top plate.
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A. Case I: Top Plate with Zero Mass ( )

Let be the angular velocity of the sphere, expressed
in spacefixed coordinates. The position and orientation of the
sphere’sgeometric centerevolve according to

(2)

(3)

where is a transformation that takes vectors in
into skew-symmetric matrices.1Note that (2) expresses

the rolling constraint which dictates that the instantaneous ve-
locity of the bottom contact should be zero.

Let be the spacefixed position of the center of mass
of the sphere. If is the sphere’s kinetic energy, then the
equations of motion for the sphere are [20]

(4)

(5)

where is the vector of angular velocities of the iner-
tial frame in which we chose to express matters. In our case,

because the spacefixed frame does not rotate. The vec-
tors are the external forces and torques (including
those forces necessary to enforce the nonholonomic constraints)
acting on the center of mass of the sphere.

Assuming the mass of the top plate is zero, the kinetic energy
of the system is

(6)

with the linear velocity of the sphere’s center of mass given by

(7)

Substituting for the kinetic energy and linear velocity (6) and
(7) into the equations of motion (4) and (5), we obtain a set of
equations that involve the time derivatives of the angular veloc-
ities

(8)

The external forces acting on the sphere do so only through
the contacts with the plates. Let be the external forces
acting at the top and bottom contacts respectively. The vector

corresponds to the forces that are necessary to enforce the
rolling constraint. If we express and in spacefixed coordi-
nates, we can write

(9)

1Forx; y 2 , x � y = S(x) � y with

S(x) =

0 �x x

x 0 �x

�x x 0

:

Since and are colinear and the vectors have the
same projection onto the horizontal plane, we can combine the
effects of with those of and regard

(10)

to be the external force applied to the top plate. We combine (8)
and (9), into a system of six equations

(11)

that must be solved for the evolution of. Eliminating the con-
straint forces , we obtain

(12)

If we choose to express the sphere’s orientation using
roll-pitch-yaw angles then for we can write

(13)

Without loss of generality, we can take the center of mass to
be located along the-axis of the bodyfixed frame and write

, where . In that case, we observe that for

(14)

This determinant is positive as long as , so that the center
of mass is located inside the sphere. In particular, the matrix

is symmetric, positive–definite for and
, with eigenvalues

(15)

We summarize the equations of motion for the rolling sphere

(16)

Alternatively, using the orientation angles, the equation for the
evolution of [second of (16)] can be replaced by

(17)

with

(18)

B. The Sphere-Plate Equations

We will now modify the model presented in the previous sec-
tion, to include the effects of a top plate with mass .
For this purpose, we consider the interconnection of the plate
and sphere systems. We note that the top plate has a transla-
tional velocity which is twice that of the center of the sphere. If

is the horizontal force applied to the sphere by the top
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plate and is the external force acting horizon-
tally on top plate, then the dynamics of the rolling sphere (16)
combined with the dynamics of the top plate

(19)

lead to the equations of motion for the sphere-plate system

(20)

with [as defined in (10)] and

(21)

We will call (20) and (21) the“sphere-plate control equations.”
We remark that has units of length squared. It can be checked
that the matrix is symmetric, positive definite for .

1) A Note Concerning the Autonomous System:Throughout
the discussion, we have assumed that there are no potential en-
ergy terms and that the control inputs are the only external
forces acting on the top plate. However, the above analysis can
be modified to include the effects of a (differentiable) potential
field on the dynamical system. For example, ifacts only
on the top plate, we can write and include the ap-
propriate potential energy terms in (4) and (5), or equivalently,
make the substitution

(22)

into the last of (20). The equations of motion for the autonomous
sphere-plate system can then be obtained by setting .

C. The Control-System Viewpoint

We are now ready to explore the dynamic model given by the
sphere-plate control equations (20) and address the question of
whether or not it is possible to force the sphere to spin without
translational motion, by some choice of control inputs .
We will consider the special case for the top plate.
For a top plate with mass the discussion is largely
similar but with more cumbersome arithmetic. That case will be
omitted here. However, the case will be addressed in our
simulation of the sphere-plate system presented in Section III.

If we define the system state to be the vector

with , then we can rewrite the sphere-plate
control equations in the form

(23)

where is the drift and the control vector
fields.

We are interested in knowing whether or not there exist con-
trol inputs that can steer the system from any initial state to any
other state, i.e., connect a pair of states by a trajectory in the
state-space. For this purpose, we consider the reachable set asso-
ciated with the sphere-plate control system. For the sake of com-
pleteness, we include some of the relevant definitions. Detailed
discussions of the following concepts can be found in [11], [12],
[19] and others.

Definition 1: The reachable set associated with a control
system is the set of states that can be reached by the system
starting from an arbitrary initial condition and using appropriate
control inputs.

Definition 2: A control system

(24)

with in an smooth -dimensional manifold and is
controllable if for any two states , there exist a finite time

and control inputs defined on so that

Definition 3: The controllability Lie algebra associated with
the control system of (24) is the Lie algebra generated by the
drift and control vector fields: .

The sphere-plate system evolves on a subsetof the ten-di-
mensional (10-D) tangent bundle , being the five-dimen-
sional configuration space. Since the rolling constraint (2) is of
rank 2 everywhere, is an eight-dimensional
(8-D) submanifold of . In , we define the following two
submanifolds.

Definition 4: The zero-translational-velocity submanifold
is the manifold

Definition 5: The configuration submanifold is the mani-
fold

The set contains state values for which the top plate is sta-
tionary. It is a six-dimensional (6-D) submanifold ofbecause
the constraint has rank 2 everywhere on. Similarly,

is defined by imposing a rank-1 constraint on. Therefore
is a 5-D submanifold of and is isomorphic to the configura-
tion space . We observe that . It is known that is
reachable. In other words, the sphere can be arbitrarily reposi-
tioned and reoriented by appropriate top plate motions: this fact
corresponds to the kinematic controllability of the sphere-plate
system. In the following we show thatthe sphere-plate system
is controllable in if and only if .
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Because the reachable set associated with a control system is
invariant under feedback, we can apply a transformation to the
controls, of the type

(25)

in order to cancel the drift terms in the evolution of ,
without altering the controllability properties of the system. This
cancellation of the drift terms for , is possible because if

, the matrix that enters the sphere-plate dynamics
[last of (20)], is positive definite. Thus, its upper-left sub-
matrix is invertible, allowing us to solve for the inputs that force

Without loss of generality, we choose for the bodyfixed
location of the center of mass relative to the center of the sphere.
The resulting expressions for the drift and control vector fields
are

(26)

where

(27)

and is a rank-2 matrix, shown in (28) at the bottom of
the page. We note that the coordinatesand are ignorable,
i.e., they do not appear on the right-hand side of the equations
of motion. This is because we chose and because we
arranged matters so that the rotational inertia of the sphere has
the same value about any axis through the sphere’s center of
mass. As a result, rotation about the axis connecting the geo-
metric center and the center of mass—precisely whatmea-
sures—leaves the dynamics invariant. By ignoringand , one
can consider a reduced, 5-D version of the sphere-plate control
system, with state . We will show controllability for
the full 8-D system. We remark that the evolution equation for
the angular velocities (last of (20)) appears to be more compli-
cated than the rest of the equations of motion. This seems to be

a consequence of choosing to place the sphere’s center of mass
away from its geometric center. The evolution equation foris
simplified greatly if instead, however in that case one can
check that and the system is uncontrollable.

The equations of motion reveal that the two control vector
fields commute and thus they can be thought of as spanning the
tangent space of a 2-D submanifold in.

Observation 1: Let be the drift and control
vector fields corresponding to the sphere-plate control equations
(26). Then, and is a 2-D submanifold of

.
Proof: The drift and control vector fields corresponding

to the dynamic model of the sphere-plate system are given in
(26). The statement can be checked directly from
the algebraic expressions of . Alternatively, notice that the
vector fields are of the form

(29)

where and is the vector of the sphere’s
orientation angles. The matrix enters only in the
equation but does not depend on. From this fact, and from
the definition of the Lie bracket, we conclude that
, and that all elements in involving are

identically zero.
The above statement implies that at least locally, there ex-

ists a coordinate change under which bothand are con-
stant, therefore there exists a 2-D integral manifold whose tan-
gent space is spanned by . We observe that are in-
dependent and nonzero. Since is parallelizable, we have

. Therefore, is a 2-D sub-
manifold of .

Proposition 1: Consider a sphere-plate control system, with
a unit sphere of mass and a top plate of mass . Let be
the sphere’s rotational inertia about any axis through its center
of mass. Furthermore, let be the location of the center
of mass relative to the center of the sphere, with .

For , , and , the
set of equations

(28)
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describes the motion of the sphere-plate system. This two-input
system is small-time locally controllable in the 8-D spaceif
and only if , i.e., if and only if the sphere’s center of mass
does not coincide with its geometric center.

Proof: If then the center of mass is located on the
segment joining the top and bottom sphere-plate contacts. The
torque applied to the sphere about the spin axis is identically
zero. Therefore, the angular momentum of the sphere about the
spin axis is conserved and is an integral invariant for the system.
We conclude that the system cannot be controllable.

If , let be the drift and
be the control vector fields associated with the sphere-plate con-
trol equations, after we have used feedback to eliminate the
drift terms in the equations for (see (26) for the case of

). If the manifold was not reachable, every ma-
trix composed of elements from would have a
determinant vanishing on open sets. Since is an analytic
function of the state, it cannot vanish on open sets without being
identically zero.

The following set of elements are taken from

form an matrix whose determinant is nonzero for generic
choices of system parameters and state values. We conclude that

can only vanish on isolated points, therefore the above
eight elements of span almost everywhere in.
This fact, combined with Chow’s theorem, tell us that the Frobe-
nius manifold spanned by is locally diffeomor-
phic to which precludes the existence of (nontrivial) integral
invariants and shows that almost every point inis contained in
a neighborhood which is reachable.In light of our choice of el-
ements from spanning , we conclude [20, Prop.
7.4] that the sphere-plate system is small-time locally control-
lable from any equilibrium point in .

The existence of the integral invariant for implies that
the set of states , corresponding to nonzero spin, is not
reachable from . There does not appear to be a compact way to
characterize the elements of , and since their sym-
bolic expressions take considerable space, we will not include
them here.

Note that we were able to show controllability for the
system using elements taken exclusively from the-chain of

(i.e., elements of the form where
). This brings up the question of whether or not the system

can be linearized, with the linearized version being control-
lable. Using the formulas for the drift and control vector fields

(26)–(28), we let
so that and calculated and

. A straightforward but tedious computation shows
that for all and . The
expressions for and are particularly lengthy and will not be
included here. We conclude that any time-invariant linearization
of (20) about an equilibrium point is uncontrollable.

D. Toward Generality

Controlling the angular momentum in a sphere-plate system
can be viewed as a special case of a more general spinup
problem [6]. Consider the-dimensional control system:

(30)

with the state evolving on a manifold and .
We will call this the “base” control system and use it to define
a “derived” control system on by

(31)

with state . We could then pose the question: “given
that the base system (30) is controllable, under what conditions
is the derived system (31) also controllable?” Toward answering
this question, we can offer the following facts.

Observation 2: The control vector fields
of the derived system (31) defined on , com-

mute with each other. In addition, if the matrix
has constant rank then is an -dimensional
submanifold of .

Proof: To show for all , use
the definition of the Lie bracket and the fact that .
If the control fields are all independent and of constant rank
then Frobenius’ theorem gives us the existence of the integral
manifold.

In general, once we pass from the base system to the derived
system we can no longer rely on the control vector fields to span
additional directions by means of Lie bracketing. If there are

independent nonzero control fields, the remaining
directions must be generated by bracketing with the drift .
In the case of a base system which is linear time invariant (LTI),
the situation is simply the following.

Corollary 1: The LTI system ,
is controllable if and only if the system is

controllable.
Proof: The proof follows from the fact that the system

is controllable if and only if the matrix

is full rank.

III. SIMULATION RESULTS

The evolution of the sphere-plate system was simulated for a
sphere of unit radius with mass kg and . The
geometric center of the sphere was initially at . The
mass was located at a distance m from the center of the
sphere, along the-axis of the bodyfixed frame. The mass of the
top plate was kg. Two simulations were performed,
one to spin-up the sphere starting from rest and the other to
increase the angular momentum of an already spinning sphere.
In both cases, the top plate was required to be stationary at the
beginning and end of the simulation. The sphere-plate control
equations (20) were used, with the external forces applied to the
top plate being the control inputs and no potential field present.
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Fig. 3. Spacefixed evolution of sphere—first simulation.

Fig. 4. Bodyfixed evolution of center of mass—first simulation.

A. First Simulation: Spinup of a Stationary System

The system was initially at rest, with the center of mass lo-
cated on the sphere’s equator i.e., or equivalently, .
A constant external force was applied to the top
plate for 1.3 seconds and then the top plate was brought to a stop
by a high-gain proportional control that servoed on the transla-
tional velocity of the sphere. Fig. 3 shows the spacefixed evolu-
tion of the sphere. The center of mass is shown as a small dark
ball on the surface of the sphere. To avoid occluding the sphere,
the top plate was not drawn. The trajectory of the bottom con-
tact is plotted on the– plane. As the sphere rolls forward, the
center of mass follows the trajectory shown as a cross-hatched
curve. When the top plate comes to a stop at the end of the simu-
lation, the center of mass continues to move with zero latitudinal
velocity and a constant longitudinal velocity, corresponding to
a steady spin for the sphere. Fig. 4 shows the trajectory of the
center of mass of the sphere, in a bodyfixed coordinate frame
whose origin is at the center of the sphere and whose axes re-
main parallel to those of the spacefixed frame. The spin angular
velocity is shown in Fig. 5. Fig. 6 shows the time history
of the kinetic energy stored in the sphere. Once a constant spin
was achieved with the top plate at rest, the control inputs were

Fig. 5. Spin angular velocity—first simulation.

Fig. 6. Kinetic energy of sphere—first simulation.

such that the top plate remained stationary. These forces can
be computed from the equations of motion, as the solutions to

. They are

(32)

(33)

B. Second Simulation: Increasing the System’s Angular
Momentum

A second simulation was performed to show an example
of increasing the angular momentum of an already spinning
sphere. The inertia parameters were unchanged from the
previous simulation. The initial conditions were and

rad/s.
The strategy used to increase the energy associated with the

spinning sphere was motivated by physical intuition: With the
top plate at rest, the control inputs of (32) and (33) will keep the
top plate stationary, (i.e., ). In that case, the sphere
will remain in the same horizontal position while spinning with
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Fig. 7. Spacefixed evolution of sphere—second simulation.

Fig. 8. Bodyfixed evolution of center of mass—second simulation.

a constant angular velocity . While in that situation, we ex-
pect to be able to “pump” energy into the system by slightly
“leading” the angle of rotation

(34)

(35)

In our simulation, we applied rad starting at sec.
At sec, the top plate was again brought to rest using the
same high-gain proportional control as in the previous simula-
tion. The spacefixed trajectory of the center of mass is shown
in Fig. 7. The trajectory of the bottom contact is plotted on the

– plane. Fig. 8, shows the motion of the center of mass in
the bodyfixed coordinate frame described in Section III-A. The
center of mass changes latitude as it moves, from its initial loca-
tion on the equator to somewhere closer to the pole. We would
expect the spin to increase as a result of the decrease in the effec-
tive radius of rotation. Aside from this however, the increased
spin was also due to the kinetic energy that was added into the
system by the exogenous forces. Figs. 9 and 10 show the time
histories of the spin and the kinetic energy, respectively.

Fig. 9. Spin angular velocity—second simulation.

Fig. 10. Kinetic energy of sphere—second simulation.

IV. CONCLUSION

We have formulated a dynamic model for a family of sphere-
plate systems. These are 8-D nonholonomic systems that model
a sphere rolling without slipping between two parallel plates.
Motivated by some recent questions on more general spin-up
problems, we have considered the control problem of spinning
the sphere between the two plates by means of exogenous forces
applied to one of the plates.

The control vector fields associated with the sphere-plate
system commute, as would be the case with any system of the
form , with in a finite-dimensional
manifold . It would be interesting to explore more general
situations of this kind in order to find out under what conditions
controllability of the system on translates to controllability
of the system on , as suggested in [6].

The sphere-plate system under consideration is small-time
locally controllable if and only if the sphere’s center of mass
and geometric center do not coincide. In that case, the system
can be excited so as to have a spinning motion by an appro-
priate choice of inputs. A sphere-plate system without this iner-
tial asymmetry has an integral invariant associated with the an-
gular momentum of the sphere. Furthermore, sphere-plate dy-
namical systems cannot be approximated by controllable LTI
systems. We have presented two control strategies for altering
the angular momentum of the sphere, starting from rest or from



686 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 5, MAY 2001

a constant spin. Although we were able to find inputs that pro-
duced a steady spin for the sphere, the problem of finding op-
timal controls (in the sense of minimizing the integral of or
some other cost functional) is still open. The presence of drift
and the lack of a compact characterization for the elements of
the controllability Lie algebra make this problem a good can-
didate for applying some type of learning algorithm in order to
obtain useful and efficient control inputs.

APPENDIX

Kinematic models for the sphere-plate system are discussed
in [15], [7] and others. Briefly, let be the velocities of
the top plate, while is the position of the bottom contact
relative to some coordinate system fixed on the bottom plate.
If describes the orientation of the sphere, then the
kinematics of the sphere-plate system are

(36)

where is the transformation defined in Section
II-A.

If is the angle of rotation of the sphere about the axis through
the top and bottom contacts, then the equations

(37)

represent a simplified kinematic model of the sphere-plate
system, sometimes referred to as the “nonholonomic integrator”
[7]. The following result shows that, if we require that the top
plate be stationary at and , then it is not
possible to change the sphere’s spin,.

Observation 3: Consider the kinematic model of the sphere-
plate system given by (37). If the sphere’s translational velocity
is zero at and , then .

Proof: From (37), we obtain

(38)

Since the sphere’s translational velocity is zero at and
, we have and .

Applying integration by parts to (38) gives

or
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