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Symbolic Feedback Control for Navigation
Sean B. Andersson, Member, IEEE, and Dimitrios Hristu, Senior Member, IEEE

Abstract—We discuss the generation of symbolic feedback con-
trol sequences for navigating a sparsely-described and uncertain
environment, together with the problem of sensing landmarks suf-
ficiently well to make feedback meaningful. We explore the use of a
symbolic control approach for mitigating the lack of a detailed map
of the environment and for reducing the complexity associated with
finding control laws which steer a control system between distant
locations. Under our language-based approach, control inputs take
the form of symbolic strings. The decision process that generates
those strings is guided by estimates of the vehicle’s location within
a set of important landmarks and by the statistical effectiveness of
each string. This arrangement, and in particular the symbolic na-
ture of the control set, allows us to formulate and solve a class of
optimal navigation problems which would be exceedingly difficult
to handle if approached at the level of sensors and actuators. Our
approach is illustrated in a series of numerical indoor navigation
experiments.

Index Terms—Markov processes, mobile robot motion-planning,
motion description languages, symbolic control.

I. INTRODUCTION

THE design of feedback laws that accomplish seemingly
straightforward motion control tasks, such as navigation in

environments of even moderate complexity, arguably remains
a persistent challenge for automatic control. One of the rea-
sons for this is that the achievements of systems theory vis-a-vis
motion control are often made possible only by the most se-
vere simplifications. There are at least two observations to be
made in support of this assertion, having to do with the special-
ized nature of existing control design tools, and with the extent
to which the environment is (or is not) state-space like. First,
many of the available results—despite their elegance and impor-
tance—are established on the basis of structural requirements
that capture only a minority of interesting and realistic situa-
tions. To apply them, one must first check whether the system
in question fits in one of a variety of special classes (e.g., sys-
tems that are drift free, differentially flat [1], [2], or can be kine-
matically decoupled [3], [4]). Where such structure is not avail-
able, the task of specifying an appropriate feedback controller
is often made difficult by technical challenges and by the rich-
ness of the set of mappings from sensor to actuator signals. A
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second problem to overcome has to do with the fact that most
available control design tools are local, in the sense that they
concern systems which evolve in state-space like environments.
In many practical settings, this is a significant restriction: for
example, knowing that a mobile robot is controllable does not
reveal whether it can be steered between two locations in a re-
alistic environment, such as an office building. Attempting to
devise a state feedback law that will steer a robot through a mod-
erately sized structure with doors, human traffic, elevators, etc.,
quickly leads to an intractable problem, and it becomes “evi-
dent” that one must partition the task into intermediate pieces.
This partitioning can—and must—include the environment, as
we will argue in the sequel, because the “usual” descriptions in
terms of geometric maps endowed with global coordinate sys-
tems become difficult to generate and manage as the size of the
environment grows.

Efforts to overcome the complexity of specifying motion con-
trol tasks have included the development of so-called motion de-
scription languages, beginning with [5], [6] and its descendents
[7]–[9], as well as related work on maneuver-based planning
[10], [11]. These works, together with related efforts [12]–[16]
to develop suitable abstractions for describing systems and con-
trol policies, can be regarded as part of a broader research pro-
gram that attempts to approach systems and control without
always having to resort to analysis and design at the level of
individual sensors and actuators. In symbolic control, one in-
tentionally reduces their choice of feedback control laws to a
small (usually finite) collection of specialized and straightfor-
ward-to-design “primitives”. The only allowable control inputs
are compositions of symbols which are identified with primi-
tives and are interpreted by the control system to determine its
actuator signals. Aside from reducing the complexity of a mo-
tion control problem, this restriction to a denumerable input set
also carries intuitive appeal because tokenized descriptions are
part of everyday experience; for example, a set of directions
might include terms like “exit the room, turn right, walk down
the hallway, enter the third door on the right” as opposed to a
geometric description of the path one must take. In some cases,
this viewpoint has led to new ways of thinking about basic sys-
tems concepts, such as feedback [17]. In others (including the
work presented here), it can expand the domain of applicability
of existing tools, by re-examining control problems at a more
abstract level [18]–[21].

This paper explores the use of symbolic control for steering
a control system (e.g., a robot or other autonomous vehicle)
between two locations in an obstacle-rich, partially-known
environment which is “large” relative to the vehicle’s size and
sensing range. We circumvent some of the difficulties outlined
above by constructing a symbolic feedback process which
accepts tokenized outputs produced from the vehicle’s sensor
readings, and generates tokenized inputs which the vehicle
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interprets in order to navigate. In the sequel, we will describe
this process, together with appropriate abstractions for the
vehicle’s inputs, outputs, and state. In particular, inputs will
be drawn from the strings of a motion description language,
maneuver automaton or other control-oriented language [9],
[11], [22]. The same input symbols will be used to implicitly
describe the environment itself. We will forgo the use of geo-
metric information and will instead view the environment as a
collection of possibly disjoint regions which are “connected”
by symbolic instructions on how to reach one from another.
Doing so will introduce a natural quantization of the vehicle’s
location by “decomposing” the environment into two classes
of subsets: i) those areas that are state-space like and thus are
easily navigable using simple feedback control laws and ii)
those that are not, and thus require both a detailed description
and more sophisticated trajectory planning tools. Finally, the
vehicle’s location will be described by output symbols which
are generated from “raw” sensor data via signal processing or
other filtering. Our approach will allow us to translate what
appears to be an intractable global navigation problem into a
Markov decision process (MDP) [23] where we will be able
to generate suitable control strings via dynamic programming
(DP). This “lifting” of the navigation problem to the symbolic
domain, together with the integration of the tools that make it
possible (including language-based control, MDPs and DP),
are the main contributions of this paper.

Unlike previous works on language-based control, here the
control instructions have an imprecise effect on the evolution of
the robot due to sensor, actuator and environment uncertainties.
In addition to the non-deterministic effects of the control sym-
bols, our approach takes into account the ambiguity introduced
by the fact that many regions of the environment may look sim-
ilar when using a modest set of observations. Our work com-
plements other recent approaches to symbol-level planning for
deterministic systems [10]; besides the presence of uncertainty,
the challenge here stems primarily from the complexity of the
environment as opposed to that of the vehicle’s dynamics.

Other related research includes approaches to localization
that combine feature-based maps and Markov chains [24], as
well as other work on autonomous navigation. In [25], a similar
navigation problem is solved by “tiling” the environment with
small regions on which the robot’s state is quantized. The
collection of all quantized states is used to construct a partially
observable Markov chain. Steering the robot between two
location involves storing quantized instructions at each state of
that Markov chain. That approach tends to generate a very large
number of states. Here we are interested in a more “global”
version of the navigation problem in environments with widely
separated features and little or no geometric information re-
garding the intermediate space or the physical relationships
between landmarks [24], [25]. Furthermore, the number of
Markov states we will require is a function of the number of
landmarks, or “regions of interest” in the environment and
independent of the environment’s physical dimensions.

In [26], an MDP formulation was used to compute expected
shortest paths in a feature-based environment whose representa-
tion is a special case of what is discussed here. An important dif-
ference between that work and our approach relates to the way

uncertainty enters into the navigation problem. In [26], passage
from one feature/landmark to another is either possible or not,
and the robot is uncertain as to which case applies. Here, the
robot knows which regions can be accessed from any location,
however the presence of sensor, actuator and environment un-
certainty make it difficult to know which region will be reached
upon completion of a control program.

Posing the navigation problem in large environments where
features and regions of interest are far apart and separated
by areas with few distinguishable features is central to our
approach, as it is those settings that reveal many of the com-
plications which we have highlighted. Within areas of limited
size, existing path planning and localization tools can be quite
effective (e.g., [27]–[29]) as can be a variety of other trajectory
planning methods [30]–[32]. What is discussed here is therefore
aimed not at replacing existing results, but rather at extending
their domain of applicability via synthesis of feedback control
sequences that will allow a vehicle to span large distances.

The next section discusses the main elements necessary for
constructing a symbolic feedback controller for navigation, and
describes how linguistic descriptions of motion control tasks can
be naturally combined with landmark-based descriptions of the
environment. Doing so leads to a formulation of symbolic nav-
igation and localization problems that is both useful and more
abstract than traditional differential equation-based methods. In
Section III we show how the higher level of abstraction adopted
here makes it possible to solve navigation problems efficiently
by drawing on existing tools, including MDPs and DP. In par-
ticular, we derive optimal control policies for navigating from
one landmark to another under sensor and actuator uncertainty.
Section IV contains a set of numerical experiments that illus-
trate the effectiveness of our approach.

II. SYMBOLIC NAVIGATION AND CONTROL

Consider an underlying physical system (equipped with a
set of actuators and short-range sensors) for which we want to
specify a motion control task. Let the system’s evolution be gov-
erned by

(1)

where , an -dimensional manifold,
may be an open loop input or a feedback law, ,

and is a matrix whose columns are vector fields in . The
system is subject to sensor and actuator noise, and ,
respectively. The noise processes are taken to be bounded and
independent. We assume that may contain obstacles and
that there may be subsets of that are uncertain or unknown.
For simplicity we will assume that (1) is controllable. Doing
so will allow us to focus on challenges which arise because of
the complexity of the environment and the resulting difficulty
in selecting effective control laws, as opposed to structural de-
ficiencies in the dynamics.

A. Input Symbols and Language-Based Control

We are interested in solving a version of the following navi-
gation problem:
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Problem 1: Find a feedback control policy
that steers (1) from an initial value to a neighbor-

hood of a final state , in finite time, assuming that such
a trajectory exists.

To help manage the complexity that can arise as a result of
the assumptions made on and (1), and to proceed with our
plan for a symbolic controller, we will choose to steer (1) by
supplying it with input tokens which will be identified with var-
ious control laws of the form , together with conditions
under which those laws should be altered based on sensor data.
We will use the term symbolic plan when referring to a string of
such tokens. To construct symbolic plans, we will require a con-
trol-oriented language capable of supporting such an encoding.
Examples include MDLe [8], [9], the maneuver automata of
[11] or the language CCL [22]. In the discussion that follows we
will often refer to MDLe, which we describe briefly in the next
paragraph. We do this for the sake of concreteness and because
that language was used to implement our symbolic controllers
of Section IV. However, our approach to global navigation is
independent of the choice of a particular language.

MDLe is a formal language [33] which can describe hybrid
motion control tasks and which allows one to compose complex
control laws from simpler ones. We let

be a finite set of feedback control laws (including the trivial
), and

, be a finite set of boolean functions
of the output variables and time, including the null function

. Elements of are referred to as interrupt functions.
MDLe strings are formed using the alphabet defined by the sets

and , together with the special symbols “(”, “)” and “,”.
The simplest MDLe strings, termed atoms, are pairs of the form

, where the control is selected from and the interrupt
from . To evaluate or run the atom means to apply

the input to the control system until the interrupt function
is “high” (logical 1). Under MDLe, plans are composed by

stringing together a sequence of atoms, and associating to that
string an interrupt function. For example, evaluating the plan

means evaluating the atom
followed by the atom until the interrupt function re-
turns logical1 or has terminated, whichever occurs first.
Plans themselves can be composed together to yield higher-level
strings, e.g., . See [9] for the production rules
that define MDLe’s grammar and a discussion of the expressive
power of the language. An MDLe compiler is described in [8].

B. Symbolic Environment Descriptions

In the context of autonomous navigation, the description of
the environment itself is nontrivial, especially when the latter is
partially known and covers a domain at many times the scale
of the vehicle’s sensing range. Typically, an autonomous ve-
hicle may navigate or localize itself by means of a map ,
where is a coordinate “patch” of a certain portion of the en-
vironment (perhaps all of it) and are coordinate
functions defined on . Maps with global coordinate systems
may be difficult to obtain because they require the robot to “dis-
cover” the global geometry from sensor measurements. At the

same time, describing the world as a collection of smaller, over-
lapping coordinate patches requires the vehicle to store a multi-
tude of coordinate changes that relate overlapping regions; if a
region cannot be uniquely identified from sensor data then navi-
gation and localization become difficult, as one would be unsure
which coordinate change(s) to apply during navigation. Finally,
much of the detail stored in a typical map may be irrelevant,
because there may be regions whose structure makes trajectory
planning straightforward, or which are never visited.

Given that the vehicle may often start out with little or no
knowledge of its surroundings, much of the work in describing

has focused on so-called simultaneous localization and map-
building (SLAM) methods (see, for example, [34] and refer-
ences therein). For large environments, such methods are typ-
ically more successful at producing maps which are topologi-
cally accurate and less so at discovering precise geometric re-
lationships between terrain features [35]. This suggests that for
the purposes of describing the environment, as well as speci-
fying motion control tasks, it might be better to reserve precise
descriptions for regions of limited size centered around easily
distinguishable features. We will refer to such regions as land-
marks. More precisely, a landmark will be defined by a pair

, where the map and coordinate functions are
as specified above. We will assume that there are such land-
marks, , , and that they are phys-
ically distant from one another (i.e., ). The set of
landmarks will be denoted by . We note that our defi-
nition of a landmark differs from those commonly found in the
robotics literature, where landmarks are typically understood as
terrain features with specific coordinates. A landmark may in-
clude an area that is difficult to navigate (hence it requires a
detailed description) or a region which is especially relevant to
the tasks the robot is to perform. For example, landmarks could
take the form of occupancy grid maps [36] constructed around
GPS coordinates, visual, or sonar cues.

We do not assume that the coordinate systems are refer-
enced to any global coordinate system or that the robot knows
how any two such coordinate systems are related. As we have
mentioned in Section I, the navigation problem can be solved ef-
fectively within the confines of a landmark through the use of a
variety of map-based path-planning and localization techniques.
Thus, we will take for granted the ability to plan trajectories
and navigate “locally” on any . Here we are interested in the
global problem of navigating between landmarks, i.e., steering
the robot from one landmark to another , and with the ter-
rain separating from being at best approximately known.

One of the benefits of landmark-based descriptions of an
environment is that they can be parsimonious in the amount
of information required to specify them. For example, while
driving, it is usually helpful to have a detailed description of
highway on/off ramps or street intersections; on the other hand,
proceeding from one intersection to another mainly involves
steering to keep the vehicle in the proper lane. To create a map
of the global environment, landmarks may only need to be
related approximately, relying on the fact that they can be easily
detected once one is “close enough” to any of them. Symbolic
descriptions of control and control-oriented languages fit natu-
rally within this framework because they can be used to relate
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landmarks not geometrically, but in terms of what one must
do to get from one to another. Our approach will therefore
be to replace—whenever possible—the details of a map by
feedback programs, so that navigation between landmarks can
be accomplished by executing a series of symbolic plans that
lead to the desired landmark. In the absence of uncertainty, the
environment could thus be visualized as a directed graph whose
nodes correspond to landmarks and whose edges are identified
with control strings.

In this work we assume that the set of landmarks and an ap-
propriate collection of control plans are both given1 and con-
stant, although one can easily consider modifications in which
landmarks and plans are added or deleted. The control plans may
be determined in a variety of ways, including prior exploration
of an area, or off-line planning; they must guarantee that upon
their completion the vehicle has reached the interior of some
landmark (i.e., its state lies in one of the maps ). A simple
way of accomplishing this of course, is to “tile” the world with
landmarks, as in [24], [25]. Here we take a more economical ap-
proach, which aims to avoid tiling by selecting plans carefully.
For example, in an office environment it may be possible to
create plans which ensure the system will always end up inside
an office rather than in a hallway, although because of changes in
the environment, such as people opening or closing their doors,
the particular office cannot be specified with certainty.

Given a set of landmarks and a collection of symbolic plans,
motion control problems can now be posed at a symbolic level,
with control inputs specified in a control language of choice.
Thus, Problem 1 can be restated as follows.

Problem 2: Find a sequence of symbolic plans that will guide
the robot (1) from to , given .

Because of the presence of noise in (1) and uncertainty in the
location of various terrain features, symbolic plans will have im-
precise effects, even if the robot’s initial conditions are known.
The situation is akin to a human driver misinterpreting a set
of directions because, for example, a street sign is not clearly
visible or traffic is being diverted because of construction. This
suggests that when executing a symbolic plan, one must think
in terms of probabilities of reaching . Therefore, Problem 2
implicitly requires the robot to know the probability of being at
each landmark, based on its sensor measurements. Such knowl-
edge is necessary for deciding which control law to apply and
whether the desired landmark has been reached. This leads nat-
urally to the interpretation of Problem 2 as a Markov decision
process, where states are identified with landmarks and tran-
sitions are triggered by the execution of a plan. We will take
advantage of this interpretation in Section III; see also [26],
[38]–[40] for related work.

A symbolic controller that attempts to solve Problem 2 might
take the form of an iterative process that collects observations,
decides on an input string and applies that string to the robot.
Before we can specify such a feedback process for global nav-
igation, we need to sharpen the problem statement by making
precise the effects of executing symbolic control laws in a sto-
chastic setting, as well as the kinds of observations that are

1While the problem of choosing landmarks is an important one, it is outside
the scope of this article. For a discussion of some of the relevant issues see [37].

available for decision-making. In keeping with our symbolic
approach, the latter will be restricted to measurements (or es-
timates) of which landmark the robot is currently on.

C. Tokenizing Observations

We do not assume that the robot knows which landmark it
is on at the completion of a plan. Instead, a series of sensor
measurements may be made at that time, yielding information
about the local environment. We define an observation plan to
be a symbolic plan which moves the robot locally (on a given
landmark), while gathering sensor data. Likewise, we will use
the term control plan to distinguish strings which are designed
to steer the robot between landmarks. It is important to note
that observation plans should be designed so as to ensure that
at the completion of the plan, the robot remains on the same
landmark as at the start of the plan. This can be accomplished
by taking advantage of existing planning techniques, such as
those mentioned in Section I. A typical observation plan might
consist of a short “tour” around a landmark, using odometry or
SLAM techniques to return to the initial position.

Depending on the available sensors, the time spent on iden-
tification, and the level of uncertainty in measurements, dif-
ferent landmarks may appear similar to varying degrees and
thus may not be uniquely identifiable. We define the set

, , to be the collection of possible observa-
tion outcomes, or simply observations. This set can be viewed
as a set of equivalence classes of landmarks, where two land-
marks are equivalent if they cannot be distinguished using only
measurements taken while on either of the two. To generate an
observation the robot first obtains a sequence of measurements,
possibly while in motion, and from disparate sensors. In gen-
eral, taking advantage of different sensor modalities, such as vi-
sion, sonar, and laser range finders, and of multiple “viewpoints”
helps to reduce the overall uncertainty in determining which
landmark the robot is on. The problem of fusing these data to
generate a single observation is a common one in robotics and
there are a variety of ways to handle it [41], [42]; it can be de-
scribed abstractly as follows. Let denote the time at which the

observation plan begins and let denote the time at which
it ends. Let denote the set of all possible sensor data
streams collected over the time interval . A measurement
of the current landmark is a filter, or mapping, .
To be more precise about the form such a filter might take, one
must first specify the representation of the landmarks, that is,
whether they are occupancy grid maps, visual cues, GPS coor-
dinates, etc. In Section IV we detail one possible way of gener-
ating observations from by sampling from a probability mass
function which is produced by a bank of particle filters.

III. LANGUAGE-BASED OPTIMAL CONTROL VIA DP

A. Global Navigation as a Markov Decision Process

We assume we have available a collection of symbolic plans
denoted by . Let denote a mapping from
into the set of Markov matrices, that associates to each control
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plan a Markov matrix which specifies the transi-
tion probabilities between landmarks; thus
is the probability of ending at landmark given that the robot
(1) begins at landmark and executes plan . Likewise, let

be a collection of available observation
plans and let be a mapping from into the set of Markov
matrices. Thus is the probability of observing given
that the robot is on landmark and that the observation plan

is executed. We will assume that the Markov matrices for all
available control and observation plans are given in advance,
perhaps having been computed from prior experience or from
simulations.

B. Optimal Symbolic Control Sequences via Dynamic
Programming

Having agreed on symbolic descriptions for the system’s in-
puts , outputs and states , we define the sets of
control actions

and observation actions

In this framework time is naturally a discrete variable which is
updated upon completion of a pair of control and observation
plans. Let the quadruple denote the landmark

, control plan , observation plan , and ob-
servation outcome at time . We will use a probability
mass function to describe the robot’s location on the set of land-
marks . Towards that end, let denote the usual information
vector

(2)

and define the row vector of conditional probabilities

(3)

where is the probability of being on landmark given .
We note that is a sufficient statistic for the description of
the state of the system (see, e.g., Chapter 5 of [43]).

The dynamics of the conditional probability vector may be
described as follows. Let denote the vector . Using
Bayes rule and making the usual Markov assumption that the
current observation depends only on the current position and
the current observation plan, the dynamics of the conditional
probability can be shown to be given by

(4)

where is the Markov matrix capturing the effect of ap-
plying the control plan , while the diagonal matrix

(5)
captures the effect of the observation generated from the sensor
data measured while applying the motion plan . We note that
the Markov matrix for the observation plan appears implicitly
in (5) since the diagonal of is a column of .

Finally, define the cost functions

(6)

(7)

(8)

where is the space of probability mass functions over . The
functions and capture the costs (e.g., in terms
of time or energy) of the control and observation plans. For ex-
ample, a robot could make a few quick measurements to get a
rough estimate of its surroundings, or it could spend more time
and energy to investigate the local details. Similarly, one con-
trol plan may move the robot quickly at the expense of accurate
sensing while another may move the robot slowly to minimize
errors.

We can now rephrase Problem 2 as a standard Markov deci-
sion process problem.

Problem 3: Given the control and observation
plans associated with , , find the control policy

that maximizes

(9)

subject to the dynamics (4), (5), where denotes expected
value.

Problem 3 can be solved via dynamic programming (DP)
[43]. The resulting feedback control policy, selected via DP, is a
sequence of motion and observation plans which seek to maxi-
mize .

We now consider in detail two particular instances of Problem
3, namely that of maximizing the probability of arrival at a de-
sired landmark and that of minimizing the expected total time
to arrive at the destination. In each case we use DP to determine
the sequence of symbols from the alphabet of control and ob-
servation plans which optimizes the appropriate cost function.

C. Maximizing the Probability of Arrival

To maximize the probability of arrival at a desired landmark
in steps, we define the cost function to be

(10)
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where is a unit column vector with a 1 in the index corre-
sponding to the desired landmark and 0’s everywhere else. Ap-
plication of the DP algorithm yields the optimal return function
at step :

(11)
for , where and are the optimal choice
of control and observation plans at the step. This in turn
implies that the optimal control at the step is the pair of
control plan and observation plan given by

(12)
Solving this maximization problem in practice is of course a

nontrivial task. If the cardinalities of the control and observation
alphabets and the length of the horizon are all small enough
then the optimal solution can be found by enumerating all pos-
sibilities. However this is generally not a feasible approach and
simplifications will need to be made to find an adequate solution
in a reasonable amount of time. One technique for reducing the
computational complexity is to use a limited lookahead policy
by truncating the number of stages in the planning horizon.
In addition, a higher-level decision maker may use prior experi-
ence to restrict the choice of plans to be searched. For example,
if it is known that the robot is navigating an indoor office space,
the search may be restricted to those plans known to be effective
in such an environment.

D. Minimizing the Time to Reach a Landmark

To maximize the probability of arrival at a desired landmark
while minimizing the time it takes to get there we associate to
each control and observation plan the conditional expectation of
the time to complete the plan given the current landmark. Let

(13)
where denotes the time to complete the plan. Let be
defined similarly. We take as our cost function

(14)

Fig. 1. An office-like environment, approximately 16 m � 30 m in size. Gray
levels indicate occupancy and numbered areas indicate landmarks.

Here the are weights used to set the relative importance of
reaching the desired landmark versus minimizing the time to get
there. To find the optimal sequence of control and observation
plans we once again use DP. The optimal return function is

(15)
with the optimal given in the usual manner.

IV. SIMULATIONS

To illustrate our approach to global navigation and localiza-
tion, we performed a set of numerical experiments2 involving
a planar, direct-drive nonholonomic robot equipped with range
sensors operating in the office-like environment shown in Fig. 1.
In the image, white denotes open space, black denotes occu-
pied space, and dark gray denotes no knowledge. Nine land-
marks were defined in the environment. They are indicated in
Fig. 1 as shaded rectangles, one at each of four hallway corners,
two T-intersections, and three doorways. These landmarks were
classified into four groups—corner, T-junction, left doorway,
and right doorway—giving four possible observation outcomes.
Each landmark was represented by an occupancy grid map with

2The source code for the experiments is available upon request.
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cells of 10 cm square. The landmarks were numbered from 1 to
9 beginning with the upper left corner and proceeding clockwise
around the map.

A. Robot Model

The nonholonomic robot was modeled as a kinematic system.
The equations of motion were

(16)

where denote the position and orientation of the robot.
The variables and denote the forward and turning veloci-
ties, respectively. The actuator commands were the commanded
left and right wheel velocities, and . These were related
to the commanded forward and turning velocities by

(17)

where was the distance between the wheels. The actuator
commands and were corrupted by samples from indepen-
dent normal random variables to simulate actuator noise. The
position of the robot at the next instance of time was calculated
by using an exact solution of (16) under the assumption that the
(noisy) control values were constant over the time step.

The robot was equipped with 16 range sensors, spaced
equally in a circle around its perimeter. Each sensor acted as
a single-ray laser range-finder, returning the distance to the
nearest obstacle along the sensor ray out to a maximum of 4 m.
This distance reading was corrupted by a sample from a normal
random variable to simulate measurement noise.

B. Control Alphabet

As described in Section II, we chose the motion description
language MDLe [7]–[9] as a means of tokenizing the robot’s
control and storing the instructions used to guide it from one
landmark to another. In order to generate the initial “alphabet”
from which MDLe strings could be constructed, we defined four
control and five interrupt functions. They are listed next.

• Control functions
— go

Sets commanded forward velocity to and turning ve-
locity to .

— goStraightAvoid
Moves the robot forward while steering away from
nearby obstacles by applying

where is the distance to the nearest obstacle as esti-
mated from the sensor data. The sign of is chosen so
as to steer away from the obstacle.

— alignNearWall
Aligns the robot to the nearest wall by setting

where is an estimate of the angle between the heading
of the robot and the nearest wall.

— followNearWall
Follows the nearest wall while maintaining a distance
to that wall by setting

where is the distance to the nearest obstacle and is a
small, positive constant.

• Interrupt functions
— wait

Interrupts after seconds have elapsed.
— atHallPattern

Interrupts if the obstacle pattern sensed around the robot
matches the pattern encoded in the arguments. Here the
arguments , , , and indicate the front, left, back, and
right of the robot; their values indicate whether the given
direction should be clear out to distance (0), occupied
before (1), or should be ignored (2).

— inHall
Interrupts if the sensor data indicate the robot is in a
hallway of width less than or equal to .

— alignedNearWall
Interrupts if the heading angle with respect to the nearest
wall as estimated from the sensor data is within .

— frontNotOpen
Interrupts if an obstacle within distance of the front of
the robot is detected.

— frontOpen
Interrupts if there are no obstacles detected within dis-
tance of the front of the robot.

— sideOpen
Interrupts if the sensors indicate that the side encoded
in the argument has no obstacles within a distance .
The variable can take the values 1 (left side), 2 (right
side), and 3 (either side).

The control alphabet available to the robot was the collection of
all possible atoms created by combining the above interrupt and
control functions. We note that some of the interrupt functions
shown above are redundant. For example, the functionality of
the last three could be implemented using atHallPattern.
We chose to include the additional interrupt functions here for
the sake of improving the readability of the resulting MDLe
code.
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TABLE I
MDLe CODE FOR PLAN �

C. Control Plans

Armed with the above alphabet, we defined three control
plans , , and , designed to move the robot through the
hallways of the map shown in Fig. 1. The first plan was intended
to navigate from one landmark to another in a counter-clock-
wise manner, the second was designed to move the robot in a
clockwise manner, and the third was the identity plan which
applied a zero control, leaving the robot in place. The first plan
is shown in Table I. The source code is written as a sequence
of atoms, each of which is comprised of an interrupt function
followed by a control function. The plan has a global interrupt
which causes it to expire after a maximum of 500 seconds. It
begins by pointing the robot toward a wall, moving close to that
wall, turning to the left, and then aligning with the wall. Once
aligned it follows the wall until it determines it is in a hallway
(which indicates it has moved out of the current landmark) and
then continues until the robot detects an opening to either side.
The second plan is similarly structured.

To determine the corresponding Markov matrices, each plan
was run at least 50 times from each landmark starting from ran-
domly selected initial conditions. The robot’s true position was
recorded at the end of each run. The resulting matrices were as
shown in the equation at the bottom of the page, and
where is the identity matrix. From these matrices we see that

the first plan did tend to steer the robot to the previous land-
mark, with the exception of landmark 5 (from which the robot
was most likely to move “forward” to landmark 6) and land-
mark 6 (from which the plan usually drove the robot all the way
to landmark 1). The second plan generally led the robot to the
subsequent landmark, except from landmark 5 from which the
robot usually went to landmark 4.

The times it took for the robot to complete each control plan
were also recorded. The average times (in seconds) from each
landmark were

D. Observation Plans

In addition to the three control plans, two observation plans
and were created. The first moved the robot forward

very briefly (0.2 sec), while avoiding any intervening obstacles.
During that time, the robot could only gather four sets of
sensor readings, for a quick but less-informative observation.
The second observation plan moved the robot forward for a
full second, gathering 20 sets of readings for a more accurate
observation of the current landmark. Note that under both plans
the robot moved only a short distance and consequently it
did not leave the current landmark. These plans were chosen
primarily for their simplicity; more elaborate plans could easily
be adopted.

As discussed in Section II, the sensor data gathered during
execution of the observation plan must be filtered to generate an
observation of the current landmark (from the set ). Consider
first the standard problem of localization on a given map. This
problem can be solved effectively using a particle filter [44],
[45]. This is a Monte Carlo-based approximation to the Bayes



934 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 6, JUNE 2006

filter which uses the sensor data to maintain a probability density
function (pdf) over all possible headings and locations on the
given landmark map. A finite set of samples (often called parti-
cles) is drawn from the density function describing the robot’s
state. The state of each particle is propagated using a motion
model for the evolution of the system (1). Incoming sensor data
are then used to weight the samples according to Bayes rule and
a sensor model; the latter is simply a conditional probability
density function over the set of sensor outputs given the state
of the system.

In our setting there is not one but rather card maps,
one for each possible observation outcome. Independent in-
stances of the particle filter algorithm can be run simultaneously
on each of these maps as the robot executes an observation
plan. To localize within the set , we define a probability mass
function over as follows. Let , denote the
sum of the probabilities of the particles on each of the possible
observation outcomes after completion of the observation plan
but before normalization. By construction of the set , each
of these landmarks is distinguishable from the others using
the sensor suite of the robot. Therefore, if the robot is not on
a landmark corresponding to , the surrounding environment
will appear quite different from the environment encoded in the
landmark map. As a consequence, the (non-normalized) weight
of each particle on that map will be very small; is thus an
indication of the goodness of the “fit” of the landmark map
to the actual environment surrounding the robot. With this in
mind, Prob(observation ) may be approximated by the proba-
bility mass function defined by , .
An observation of the current landmark is then generated by
sampling from this mass function.

For the simulation experiments presented here, particle filter
localization algorithms (with 300 particles) were run concur-
rently on each of the maps corresponding to the possible obser-
vation outcomes (corner, T, left doorway, and right doorway).
Each observation plan was run at least 25 times from each land-
mark to obtain an estimate of the distribution for that observa-
tion. The resulting matrices for the two observation plans were

(18)

The fact that observation plans are executed only after the
robot completes a control plan implies that the robot’s position
at the start of an observation plan will not be uniformly random.
This suggests that the efficiency of our localization algorithm
could be increased by restricting the choice of the particle fil-
ters’ initial pdfs. Specifically, one should “seed” with particles
only those areas which the robot is likely to be in at the end of
a control plan. In our experiments we did precisely that, by first
collecting (off-line) statistics on the robot’s position after ap-
plying each of the available control plans from each landmark.
Those statistics were stored and later used to generate the initial
pdf for the particles in our localization algorithm.

Remarks: The efficacy of the particle filter-based approach is
strongly influenced by the number of particles chosen for each
instance of the algorithm. Since we are interested in localizing
over the set , as opposed to determining a precise location on a
given map , the number of particles required per landmark is
generally less than what would be needed for accurate localiza-
tion on that . However, using an insufficient number of parti-
cles will generally lead to a uniform distribution over the set of
possible landmark observations. There is therefore a tradeoff be-
tween the number of particles used (and thus the required com-
putation time) and the amount of information generated. This
tradeoff can be captured under the general framework of Sec-
tion III-A by assigning different costs to different choices for
the number of particles used, and optimizing these costs.

It is important to keep in mind that the proposed localization
algorithm is to be run only while an observation plan is being
executed, and not while a control plan is in progress. We have
found that on small maps (e.g., 5 with 300 particles), the al-
gorithm tends to converge quickly to a sharp distribution, even
if the robot’s surroundings look very different than the map on
which the particles evolve. If the algorithm were run during ex-
ecution of the control plan then at the start of the subsequent ob-
servation plan the particle distribution would be highly localized
but most likely erroneous.3 As a result, the weights would
carry very little information as to which landmark the robot
is currently on. While there are variants of the basic particle
filter-based localization algorithm which can handle this diffi-
culty [44], the additional complications can be avoided simply
by running the particle filters only when observing a landmark.

E. Navigation Results

In the first of the two numerical experiments, the robot was re-
quired to reach a desired landmark while minimizing the amount
of time it took to get there. This was accomplished by utilizing
the optimal feedback controller of (15). We chose
and to ensure that the controller only optimized
for time over those control and observation sequences that had a
high probability of arrival at the desired landmark. The number
of stages for the optimal controller was set to . If at any
time the probability of being on the desired landmark exceeded
a threshold value (0.9) then the controller terminated. If at the

3The situation in which the underlying pdf is a sharply-peaked unimodal dis-
tribution with the peak far away from the true robot location is known in the
robotics literature as the “kidnapped robot” problem.
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Fig. 2. Simulation 1: Robot trajectory from landmark 2 to landmark 5. Six
plans were executed before the controller knew with high probability (>90%)
that landmark 5 had been reached. A landmark-specific controller then guided
the robot into the room. Figure axes indicate distance in meters.

Fig. 3. Simulation 1: Evolution of the conditional probability. The controller
was initially given the true location of the robot, and maintained fairly good
localization throughout.

end of four steps the probability of being on the desired land-
mark was less than the threshold, then the controller was run
again.

The robot was placed in a random starting position on land-
mark 2 (outside the top door of the large room) and knew with
certainty which landmark it was on. The robot was commanded
to go to landmark 5 (outside the open office door on the right).
Once there, a “local” controller (tailored to local maps that in-
clude doorways) was used to guide the robot into the room. The
resulting trajectory of the robot is shown in Fig. 2, with the posi-
tion of the robot at the end of each control and observation plan
indicated by an ‘x’; the evolution of the conditional probability
vector is shown in Fig. 3.

The optimal selection of control and observation plans to-
gether with the true landmark (after the control was applied),

TABLE II
SIMULATION 1: SEQUENCE OF PLANS, POSITIONS, AND OBSERVATIONS.
THE NOTATION “IC” STANDS FOR “INITIAL CONDITION”. THE MONTE

CARLO-BASED OBSERVER YIELDED THE CORRECT LANDMARK CLASS IN

EVERY MEASUREMENT

Fig. 4. Simulation 2: Robot trajectory from landmark 4 to landmark 9. The
robot moved through the landmarks in a counter-clockwise fashion to reach
landmark 9 in four steps. By continuing to landmark 8 the robot was able to
determine its location. It then returned to landmark 9 but needed several obser-
vations to confirm its position.

as well as the true and observed landmark classes are shown in
Table II. The robot navigated successfully to the desired land-
mark after six steps. Notice that the controller always selected
the brief observation plan; this is because the improvement in
accuracy when using the longer observation plan did not appear
to offset the cost of the longer time needed to run it. The final
transition into the room was made after the controller was al-
most certain that it had arrived at the desired landmark. We note
that the particle filter-based observer returned the correct land-
mark class in every observation during this run.

In the second simulation the robot was placed on landmark 4
(the upper-right corner of the map) and asked to go to landmark
9 (the lower-left corner of the map). Unlike the previous case,
the conditional probability was initialized to a uniform density
over all landmarks, so that the robot had no a-priori knowledge
of its location. The goal was to maximize the probability of ar-
rival at landmark 9 and thus the controller defined by (12) was
used. The resulting trajectory is shown in Fig. 4 and the evolu-
tion of the condition probability is shown in Fig. 5.

The optimal sequence of control and observation plans and
the actual and observed landmark classes are shown in Table III
(in the table the omitted data simply repeats the previous line).
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Fig. 5. Simulation 2: Evolution of the conditional probability. Initially, the con-
troller had no information as to the robot’s position, but determined the correct
location within five steps. Several erroneous measurements after step 20 forced
the controller to make additional observations before concluding that the desired
landmark had been reached.

TABLE III
SIMULATION 2: SEQUENCE OF PLANS, POSITIONS, AND OBSERVATIONS. NOTICE

THAT THE MONTE CARLO-BASED LOCALIZATION ALGORITHM RETURNED

SEVERAL ERRONEOUS OBSERVATIONS. DESPITE THIS THE CONTROLLER WAS

ABLE TO STEER THE ROBOT TO THE DESIRED LANDMARK

The robot moved to landmark 9 quickly but at that point was un-
sure of its position. After moving away to landmark 8 the robot
had localized itself. However, after returning to the landmark
9 the robot received several erroneous measurements, and con-
sequently required additional observations before it could con-
clude that it had reached the desired landmark. Note that in this

case, the controller did on occasion choose the longer of the ob-
servation plans.

Remark: The office-like environment used in these simula-
tions was highly structured and that fact was used to design ef-
fective control laws and interrupt functions for navigation. How-
ever the general approach presented in this paper would work
just as well in unstructured environments.

V. CONCLUSIONS

We have described a symbolic feedback process for naviga-
tion in a large, imprecisely described environment. In this work,
the environment is described as a collection of widely sepa-
rated regions (termed “landmarks”) which are the only areas
for which detailed descriptions (e.g., maps) are available. Land-
marks are linked by symbolic strings, which a robot could in-
terpret to steer itself from one landmark to another. We have fo-
cused on landmark-to-landmark navigation and have provided
references to existing techniques which could be used to navi-
gate locally (i.e., to specific coordinates) within a landmark. In
the present setting, symbolic feedback control is enabled by the
use of a motion description language which allows one to tok-
enize the vehicle’s inputs as well as the relationships between
landmarks, thus passing to a symbolic version of the naviga-
tion problem. In that new, more abstract domain, we can find
solutions using techniques from Markov decision processes. In
particular, feedback control policies are generated via dynamic
programming and consist of: i) strings intended to move the
robot towards a desired landmark, alternating with ii) observa-
tion policies that process the robot’s sensor data (via a set of par-
ticle filters) to yield an approximation of the conditional proba-
bility of being on each landmark. That probability in turn is used
to generate symbolic observations that encode the robot’s best
guess as to its location.

The approach we have presented is robust to sensor and ac-
tuator noise. However, it requires that upon their completion,
the control and observation plans of choice lead the robot to
one of the known landmark maps. If that assumption is not met
then modifications are required to prevent the robot from being
“lost”. The proposed approach fits naturally with the idea of
using symbolic instructions to specify motion control tasks and
presents the first instance, to the authors’ knowledge, of a feed-
back control law that is implemented at the level of a motion
description language, as opposed to that of sensors and actua-
tors.
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